
An Efficient Bandit Algorithm for Realtime Multivariate
Optimization

Daniel N. Hill

Amazon.com, Inc.

Palo Alto, CA

daniehil@amazon.com

Houssam Nassif

Amazon.com, Inc.

Seattle, WA

houssamn@amazon.com

Yi Liu

Amazon.com, Inc.

Seattle, WA

yiam@amazon.com

Anand Iyer

Amazon.com, Inc.

Seattle, WA

aiyer@amazon.com

S. V. N. Vishwanathan

Amazon.com, Inc. & UC Santa Cruz

Palo Alto, CA

vishy@amazon.com

ABSTRACT
Optimization is commonly employed to determine the content of

web pages, such as to maximize conversions on landing pages or

click-through rates on search engine result pages. Often the layout

of these pages can be decoupled into several separate decisions. For

example, the composition of a landing page may involve deciding

which image to show, which wording to use, what color background

to display, etc. Such optimization is a combinatorial problem over

an exponentially large decision space. Randomized experiments

do not scale well to this setting, and therefore, in practice, one is

typically limited to optimizing a single aspect of a web page at

a time. This represents a missed opportunity in both the speed

of experimentation and the exploitation of possible interactions

between layout decisions.

Here we focus on multivariate optimization of interactive web

pages. We formulate an approach where the possible interactions

between different components of the page are modeled explicitly.

We apply bandit methodology to explore the layout space efficiently

and use hill-climbing to select optimal content in realtime. Our

algorithm also extends to contextualization and personalization

of layout selection. Simulation results show the suitability of our

approach to large decision spaces with strong interactions between

content. We further apply our algorithm to optimize a message that

promotes adoption of an Amazon service. After only a single week

of online optimization, we saw a 21% conversion increase compared

to the median layout. Our technique is currently being deployed to

optimize content across several locations at Amazon.com.

KEYWORDS
Multivariate optimization, multi-armed bandit, hill-climbing, A/B

testing

ACM Reference format:
Daniel N. Hill, Houssam Nassif, Yi Liu, Anand Iyer, and S. V. N. Vish-

wanathan. 2017. An Efficient Bandit Algorithm for Realtime Multivariate

KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4887-4/17/08.

https://doi.org/10.1145/3097983.3098184

Optimization. In Proceedings of KDD ’17, Halifax, NS, Canada, August 13-17,
2017, 9 pages.
https://doi.org/10.1145/3097983.3098184

1 INTRODUCTION AND BACKGROUND
Web page design involves a multitude of distinct but interdependent

decisions to determine its layout and content, all of which are opti-

mized for some business goal [17, 20]. For example, a search engine

results page may be constructed from a set of query results, spon-

sored links, and query refinements, with the goal of maximizing

click-through rate. A landing page for an advertisement may consist

of a sales pitch containing separate components, such as an image,

text blurb, and call-to-action button which are selected to promote

conversions. Large-scale data collection offers the promise of auto-

matic optimization of these components. However, optimization of

large decision spaces also offers many challenges.

Separate optimization of each component of a web page may be

sub-optimal. An image and a text blurb that appear next to each

other may interact or resonate in a way that cannot be controlled

when selecting them independently. When multiple decisions are

taken combinatorially, this leads to an exponential explosion in

the number of possible choices. Even a small set of decisions can

quickly lead to 1,000s of unique page layouts. Controlled A/B tests

are well suited to simple binary decisions, but they do not scale well

to hundreds or thousands of treatments. Finding the best layout is

further complicated by the need for contextualization and person-

alization which compounds the number of factors that need to be

considered simultaneously. A final challenge is that any solution for

optimizing page layout needs to be deployed in a system that can

make selections from the layout space in realtime where latencies

of only 10s of milliseconds may be acceptable.

One approach for efficiently learning to optimize a large deci-

sion space is fractional factorial design [4, 13]. Here, a randomized

experiment is designed to test only a fraction of the decision space.

Assumptions are made about how choices interact in order to infer

the results for the untested treatments. Experimentation is accel-

erated with the caveat that higher-order interactions are aliased

onto lower-order effects. In practice, higher-order interactions are

often negligible so that this approximation is appropriate. However,

these experiments suffer from their rigidity. The experimental de-

signs follow a schedule that make it difficult to test new ideas ad

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1813

https://doi.org/10.1145/3097983.3098184
https://doi.org/10.1145/3097983.3098184
rodkin
Typewritten Text
This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs International 4.0 License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

hoc. The experiments are also typically non-adaptive so that losing

treatments cannot be automatically suppressed. Fractional factorial

designs also make no account of context.

A major alternative in fast experimentation is multi-armed ban-

dit methodology. This class of algorithms balances exploration and

exploitation to minimize regret, which represents the opportunity

cost incurred while testing sub-optimal decisions before finding the

optimal one. Bandit algorithms are effective for rapid experimen-

tation because they concentrate testing on actions that have the

greatest potential reward. Bandit methods have shown impressive

empirical performance [8] and can easily incorporate context [2, 14].

There is also literature on applying bandit methods to combinato-

rial problems. This includes combinatorial bandits [7] for subset

selection. Submodular bandits also select subsets while considering

interactions between retrieved results to maintain diversity [20, 22].

Thus, bandit algorithms are good candidates to efficiently discover

the optimal assignment of content to a web page.

Here we present an approach to layout optimization using ban-

dit methodology. We name our approach multivariate bandits to

distinguish from combinatorial bandits which are used to optimize

subset selection. We propose a parametric Bayesian model that

explicitly incorporates interactions between components of a page.

We avoid a combinatorial explosion in model complexity by only

considering pairwise interactions between page components. Con-

textualization and personalization are enabled by further allowing

for pairwise interactions between content and context. We effi-

ciently balance exploration and exploitation through the use of

Thompson sampling [1]. We allow for realtime search of the layout

space by applying greedy hill climbing during selection.

Our approach is most similar to [21] where the authors used a

model of pairwise interactions to optimize whole-page presentation.

However, their algorithm addresses a different use-case of assigning

content to the page’s components where every piece of content is

eligible for every slot. An alternative (and slower) approach to hill-

climbing in the discrete decision space is to search in an equivalent

continuous decision space that can be obtained as the convex hull

of the binary decision vectors. A gradient descent approach yields

a global-optimal vector that can then be rounded to output a binary

decision vector. In the online bandits setting, this translates to the

approach taken by the authors in [16] and [7]. Our approach is

a greedy alternating optimization strategy that can run online in

real-time.

Our solution has been deployed to a live production system to

combinatorially optimize a landing page that promotes purchases

of an Amazon service (Fig. 1), leading to a 21% increase in purchase

rate. In the sections below, we describe our problem formulation,

present our algorithm, demonstrate its properties on synthetic data,

and finally analyze its performance in a live experiment.

2 PROBLEM FORMULATION
2.1 Problem setting
We formally define the problem we address as the selection of a

layout A of a web page under a context X in order to maximize

the expected value of a reward R. The reward R corresponds to the

value of an action taken by a user after viewing the web page. R
could represent a click, signup, purchase or purchase amount.

Figure 1: Example of a generic promotional message for an
Amazon service. Each component is a separate widget with
the indicated number of alternative content. There are 48
total distinct layouts.

We assume that each possible layout A is generated from a com-

mon template that contains D widgets or slots representing the

contents of the page. The ith widget has Ni alternative variations

for the content that can be placed there. Our approach is general and

can handle a different number of variations per widget; however,

for simplicity of formulation, we will assume that all widgets have

the same number of possible variations, so that N1 = N2 = · · · = N .

Thus, a combinatorial web page has ND
possible layouts. We rep-

resent a layout as A ∈ {1, 2, . . . ,N }D , a D-dimensional vector. A[i]

denotes the content chosen for the ith widget.

Context X represents user or session information that may im-

pact a layout’s expected reward. For example, context may include

time of day, device type, or user history. We assume X is drawn

from some fixed unknown distribution. X andA are combined (pos-

sibly nonlinearly) to form the final feature vector BA,X ∈ R
M

of

length M . BA,X can thus include interactions between an image

displayed in a slot, the user’s age, and time of day.

The reward RA,X for a given layout and context depends on a

linear scaling of BA,X by a fixed but unknown vector of weights

µ ∈ RM . We model the reward with a generalized linear model:

E[R |A,X] = д(B⊤A,X µ), (1)

where д is the link function and ⊤ denotes the matrix transpose.

We now define a stochastic contextual multi-armed bandit prob-

lem [5]. We have ND
arms, one per layout. The algorithm proceeds

in discrete time steps t = 1, 2, . . . ,T . On trial t , a context Xt is

generated and a vector BA,Xt is revealed for each arm A. Note that
whenever t is a subscript, it indicates a time step index. An arm At
is selected by the algorithm and a reward Rt = RAt ,Xt is observed.

LetHt−1 = {(Aτ ,Rτ ,Xτ), τ = 1, . . . , t−1} represent the history
prior to time t . Let A∗t denote the optimal arm at time t :

A∗t = arдmax
A

E[RA,Xt]. (2)

Let ∆t be the difference between the expected reward of the optimal

arm and the selected arm at time t :

∆t = E[RA∗t ,Xt] − E[RAt ,Xt]. (3)

The objective of our bandit problem is to estimate µ while minimiz-

ing cumulative regret over T rounds:

∆T =
T∑
t=1

∆t . (4)

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1814

The contextual bandit with linear reward problem has been well

studied [5]. Dani et al. established a theoretical lower bound of

Ω(M
√
T) for the regret, along with a matching upper bound [11].

With an oracle which efficiently solves equation 2, then both [11]

and [2] give an efficient algorithmwith a regret bound of Õ(M3/2
√
T),

the best achieved by a computationally efficient algorithm. Efficient

here means a polynomial number of calls to the oracle. In this work,

we take care in constructing an efficient oracle which seeks to ap-

proximate the solution to equation 2 efficiently in our contextual

setting.

Next we will specify how to compute and update a model of µ,
generate feature vector BA,X from layout A and context X , and
approximate equation 2 in a combinatorial setting.

2.2 Probability model
Here we consider the case where reward R is binary, although our

approach can be extended to categorical and numeric outcomes. Let

R = +1 indicate the user took the desired action andR = −1 indicate
otherwise. We choose the probit function as our link function for

equation 1. Our probit regression has binary reward probability:

P(R |A,X) = Φ
(
R ∗ B⊤A,XW

)
, (5)

whereW is our estimate of µ, and Φ is the cumulative distribu-

tion function of the standard normal distribution. We model the

regression parametersW as mutually independent random vari-

ables following a Gaussian posterior distributions, with Bayesian

updates over an initial Gaussian prior of N(0, 1). We updateW
using observations R and BA,X as described in [12]. Note that in

the remainder of the paper we will assume binary features so that

BA,X ∈ [0, 1]
M
. This is done for notational convenience, but it is

straight-forward to extend our formulation to continuous inputs.

To capture all possible interactions between web page widgets,

the number of model parameters would be O(ND). We avoid this

combinatorial explosion by capturing only pair-wise interactions,

and assuming that higher-order terms contribute negligibly to the

probability of success. Ignoring context X , we denote the non-

contextual feature vector as BA, and our linear model becomes:

B⊤AW =W
0 +

D∑
i=1

W 1

i (A) +
D∑
j=1

D∑
k=j+1

W 2

j,k (A) (6)

whereW 0
is a common bias weight,W 1

i (A) is a weight associated

with the content in the ith widget, andW 2

j,k (A) is a weight for the

interaction between the contents of the jth and kth widgets.W
thus contains O(N 2D2) terms (see Table 1).

To account for contextual information X and possible interac-

tions between web page content and context, additional terms can

be added to BA,X . We represent X as a multidimensional categor-

ical variable of dimension L where each dimension can take one

of G values. Let Xl represent the l
th

feature of the context. We

add first-order weights for X as well as second-order interactions

Table 1: Definition of weights in models.

Weight class Definition

W 0
Bias weight

W 1

i (A) Impact of content in ith widget

W 2

i, j (A) Interaction of content in ith widget with con-

tent in jth widget

W c
i (X) Impact of ith contextual feature

W 1c
i, j (A,X) Interaction of content in ith widget with the

jth contextual feature

W L(A) Weight associated with distinct layout A

between A and X features as

B⊤A,XW =W
0 +

D∑
i=1

W 1

i (A) +
D∑
j=1

D∑
k=j+1

W 2

j,k (A)

+

L∑
l=1

W c
l (X) +

D∑
m=1

L∑
n=1

W 1c
m,n (A,X)

(7)

whereW c
l (X) is a weight associated with the lth contextual feature

andW 1c
m,n (A,X) is a weight for the interaction between the content

of themth
widget and the nth contextual feature.W now contains

O(NDGL + N 2D2) terms.

3 MULTVARIATE TESTING ALGORITHM
Although our feature representation limits model complexity to

2
nd

-order interactions, we need an efficient method to learn the still

large number of parameters. Furthermore, computing thearдmax in
equation 2 requires a search through ND

layouts. We now describe

a bandit strategy that efficiently searches for near optimal solutions

without evaluating the entire space of possible layouts.

3.1 Thompson Sampling
Thompson sampling [8] is a common bandit algorithm used to bal-

ance exploration and exploitation in decision making. In our setting,

this implies the user is not always shown the layout with the cur-

rently highest expected reward, but is also shown layouts that have

high uncertainty and thus a potentially higher reward. Thompson

sampling selects a layout proportionally to the probability of that

layout being optimal conditioned on previous observations:

At ∼ P(A = A∗ |X ,Ht−1). (8)

In practice, this probability is not sampled directly. Instead one

samples model parameters from their posterior and picks the layout

that maximizes the reward, as in algorithm 1. Note that weights

Wt are estimated from history Ht−1. In our Bayesian linear pro-

bit regression, the model weights are represented by independent

Gaussian random variables [12] and so can be sampled efficiently.

Let W̃ P(W |H) be the sampled weights. The sampled reward

probability is monotonic with B⊤A,XW̃ , which is itself a Gaussian-

distributed random variable. This property ensures that Thompson

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1815

Sampling remains computationally efficient as long as we can effi-

ciently solve arдmaxA B⊤A,XW̃ [2].

Algorithm 1 Thompson Sampling for Contextual Bandits

1: for all t = 1, . . . ,T do
2: Receive context Xt
3: Sample W̃t from the posterior P(W |Ht−1)

4: Select At = arдmaxA B⊤A,Xt
W̃t

5: Display layout At and observe reward Rt
6: UpdateHt = Ht−1 ∪ (At ,Rt ,Xt)

In line 4 of algorithm 1, finding the best layout A given W̃ and

BA,X is an instance of the maximum edge-weighted clique problem,

which is NP-Hard [15]. At each round, it requires evaluatingO(ND)

layouts. Next we describe an efficient approximation.

3.2 Hill climbing optimization
Instead of an exhaustive search to find the true arдmax over A, we
approximate it by greedy hill climbing optimization[6]. We start

by randomly picking a layout A0
. On each round k , we randomly

choose a widget i to optimize, while fixing the content of all other

widgets. We cycle through the N possible alternatives for widget i ,
and select content j∗ that maximizes the layout score:

j∗ = arдmax
j

B⊤Ak−1←(A[i]=j),XW̃ (9)

where Ak−1 ← (A[i] = j) denotes layout Ak−1 updated so that

widget i is assigned content j. We then use the optimal content j∗

to generate Ak from Ak−1. We repeat this procedure K times, each

iteration optimizing the content of a single widget conditioned on

the rest of the layout. If each widget is visited without the update

procedure changing the content, that means the search has reached

a local optimum and can be terminated early.

We thus replace line 4 of the Thompson sampling algorithm (al-

gorithm 1) by a call to the hill climbing algorithm (algorithm 2). Hill

climbing potentially converges to a local optimum while evaluating

KN layouts. We alleviate the local optimum problem by performing

random restarts [6]. We perform hill climbing S times where each

iteration s uses a different initial random layout A0

s . We return the

best layout among the S hill climbs, resulting in a maximum of

SKN layout evaluations.

Algorithm 2 Hill climbing with random restarts

1: function Hill Climbing Search(W̃ , X)

2: for s = 1, . . . , S do
3: Pick a layout A0

s randomly

4: for k = 1, . . . ,K do
5: Randomly choose a widget i to optimize

6: Find j∗ = arдmax j B
⊤

Ak−1s ←(A[i]=j),X
W̃

7: Aks = Ak−1s ← (A[i] = j∗)

8: s∗ = arдmaxs B
⊤

AKs
W̃

9: return AKs∗

When we sequentially compare two layouts that differ by only

one piece of content, we only need to sum O(D + L) weights as the
other weights in equation 7 are unchanged. Hill climbing combined

with Thompson sampling and our probability model yield a time

complexity of O(SKN (D + L)), compared with O(ND (D + L)) for
an exhaustive search.

4 SIMULATION RESULTS
We first test our algorithm on a simulated data set. Our goal is to

understand the algorithm’s performance as we vary parameters of

the simulated data relating to the (a) strength of interaction between

slots, (b) complexity of the template space, and (c) importance of

context. We refer to the non-contextual version of our multivariate

algorithm as MVT2 (see Table 2) where we use the representation

described in equation 6. We also test the contextual version of this

algorithm MVT2c which uses the representation in equation 7.

We also compare MVT2 to two baseline models. The first model,

ND
-MAB, is a non-contextual multi-armed bandit where a layout

is represented only by an identifier so that no relationship between

layouts can be learned. Such a model has been applied previously

to ad layout optimization [19]. We use a Bayesian linear probit

regression where the linear model is:

BTAW =W
L(A), (10)

withW L(A) being a weight associated with a distinct layoutA. This
baseline gives us a vanilla implementation of a multi-armed bandit

algorithm with ND
arms.

A second baseline model MVT1 is obtained by dropping the 2nd

order terms from MVT2. The linear model becomes:

BTAW =W
0 +

D∑
i=1

W 1

i (A). (11)

The MVT1 model helps us evaluate the benefit of modeling interac-

tions between the content of different widgets.

4.1 Simulated data
We generate simulated data consistent with the assumptions of the

MVT2c model. We sample outcomes from the linear probit function

of equation 5. For its linear model we use:

BTA,XW =
1

β
[W 0 + α1

D∑
i=1

W 1

i (A)

+ α2

D∑
j=1

D∑
k=j+1

W 2

j,k (A)

+ αc

L∑
l=1

W c
l (X) + αc

D∑
m=1

L∑
n=1

W 1c
m,n (A,X)],

(12)

where β is a scaling parameter and α1, α2, and αc are control pa-
rameters. We manually set the control parameters to define the

relative importance of content, interactions between content, and

context, respectively. The parameter β is set so that the overall

variance of BTA,XW is constant, ensuring the signal-to-noise ratio

is equal across experiments. For each simulation, theW parameters

are independently sampled from a normal distribution with mean 0

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1816

Table 2: Symbols for algorithms discussed in this paper.

Algorithm Description # Parameters Equation

MVT1 Probit model without interactions between widgets O(ND) (11)

MVT2 Probit model with interactions between widgets O(N 2D2) (6)

MVT2c Probit model with interactions between widgets and between widgets and context O(NDGL + N 2D2) (7)

ND
-MAB Non-contextual multi-armed bandit with ND

arms O(ND) (10)

D-MABs Independent non-contextual N-armed bandit for each of D widgets O(ND) (15)

and variance 1. We use a context X that is univariate and uniformly

distributed on the set of integers {1, 2, . . . ,G}.
Unless otherwise specified, we set D = 3 and N = 8, which

yields 512 possible layouts. Simulations were run for T = 250, 000

time steps. On each iteration of the simulation, a context is sampled

at random and presented to the algorithm. A layout is chosen by

applying algorithm 1. Then, a binary outcome is sampled from

the data generation model given the context and selected layout.

The models are batch trained every 1000 iterations to simulate

delayed feedback typically present in production systems. Each

simulation was run for 15 repetitions and plotted with standard

errors. Figure 2 shows the distribution of success probabilities for

layouts in a typical simulation experiment.

0.00 0.05 0.10 0.15 0.20 0.25

Success probability

0

10

20

30

40

50

60

70

la
yo

ut
s

Figure 2: Histogram of expected reward for typical set of
simulated layouts.

We evaluate each model in terms of regret. We define empirical

regret as the difference between the expected value of the optimal

strategy and the empirical performance of the algorithm:

reдret =
1

T

T∑
t=1

E(R |A∗t ,Xt) − Rt . (13)

We also define a local reдret by averaging the regret over a

moving window with bounds t0 and t1 as:

local reдret[t0, t1] =
1

1 + t1 − t0

t1∑
t=t0

E(R |A∗t ,Xt) − Rt . (14)

4.2 Simulation experiments
First, we test the impact of varying the strength of interactions

between layout widgets. We vary the amplitude of α2 while fixing
α1 = 1 and αc = 0. An example simulation run for each algorithm

is shown in figure 3 with α2 = 2. We see that MVT1 converges

quickly because of its smaller parameter set. However, its local

regret plateaus to a higher value due to its inability to learn in-

teractions between content. MVT2 and ND
-MAB are both able

to nearly eliminate regret, though MVT2 converges faster due to

better generalization between layouts.

0 20000 40000 60000 80000 100000

Iteration, t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

lo
ca

lr
eg

re
t

MVT1
MVT2
ND-MAB

Figure 3: Example run of algorithms on simulated data with
α1 = 1, α2 = 2, and αc = 0. Local regret values are averaged
over a moving window of 2500 iterations.

As α2 is varied, we see this pattern continue (Fig. 4). The one

exception is that MVT1 has superior regret to MVT2 when α2 = 0

(Fig. 4). This suggests that modeling pairwise interactions is harmful

when these interactions are not actually present.

Next, we examined the impact of complexity on performance

(Fig. 5). The number of variations per slot, N , was systematically

varied from 2 to 12. Thus, the total number of possible layouts

ND
was varied from 8 to 1,728. For these experiments, we set

α1 = α2 = 1 and αc = 0. The reдret of all algorithms worsened as

the number of layouts grew exponentially. However, the ND
-MAB

algorithm showed the steepest drop in performance with model

complexity. This is because the number of parameters learned by

ND
-MAB grows exponentially with N . The shallow decline in the

performance of both MVT1 and MVT2 as N is increased suggests

that either algorithm is appropriate for scenarios involving 1,000s

of possible layouts.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1817

0.0 0.5 1.0 1.5 2.0

Widget interaction strength, α2

0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
ea

n
re

gr
et

MVT1
MVT2
ND−MAB

Figure 4: Algorithm performance as α2 is varied.

2 4 6 8 10 12

Variations per widget, N

0.00

0.01

0.02

0.03

0.04

0.05

M
ea

n
re

gr
et

MVT1
MVT2
ND-MAB

Figure 5: Algorithm performance as N is varied.

Finally, we tested the performance of MVT2c in the presence

of contextual information and interactions between content and

context (Fig. 6). We vary the amplitude of αc while fixing α1 =
α2 = 1. To control overall model complexity, we reduce the number

of variations so that N = 4, and use G = 4 for the number of

possible contexts. We see superior performance for MVT2c over

MVT2 for values of αc > 0.5. This shows that MVT2c lowers regret

by accounting for the impact of context; however, when the impact

of context is very weak, the extra complexity of modeling context

may impair performance.

Taken together, these simulation results suggest that our mul-

tivariate bandit algorithm MVT2 is appropriate in scenarios with

a large decision space and where interaction effects are present

between widgets in the layout. Additionally, the contextual version

of our algorithm, MVT2c, performs well in scenarios where the in-

fluence of context is significant. Simpler models may show superior

regret when these concerns are not in place.

4.3 Hill climbing impact
We examine the impact of hill climbing on convergence and regret

for MVT2. We focus on the scenario where N = 8, D = 3, α1 =
α2 = 1, and αc = 0. We ran hill climbing algorithm 2 for 1000 times

on MVT2 models that were fully trained on instantiations of the

simulated data model of equation 12 (see Fig. 7).

0.0 0.5 1.0 1.5 2.0

Context strength, αc

0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
ea

n
re

gr
et

MVT2
MVT2c

Figure 6: Algorithm performance as αc is varied.

Hill climbing converges quickly for this data set. The number

of iterations for hill climbing to converge was 6 ± 2.4 (mean ±

S.D.). This corresponds to only 6(N − 1) + 1 = 42 distinct layouts

being evaluated out of a total of 512 possible layouts. However, this

came at the cost that the hill climb reached the global optimum

with a probability of p(дlobal optimum) = 0.35. Despite not always

converging to a global optimum, the mean regret was reduced from

0.112 for a random layout to 0.033 for the converged solution. We

also examined the performance of hill climbing as we vary the

maximum number of iterations, K . The regret and probability of

climbing to the global optimum both plateaued at K = 10.

Regret can further be reduced by random re-starts. As each run of

hill climbing is independent, the probability of reaching the global

peak after S restarts is 1 − (1 − p(дlobal optimum))S . Therefore,
with S = 5, the global optimum can be found with probability

greater than 90% after a maximum of 42 ∗ S = 208 distinct layout

evaluations.

5 EXPERIMENTAL RESULTS
We now examine the performance of our algorithm on a live pro-

duction system.

5.1 Experimental design
We applied MVT2 to optimize the layout of a message promoting

the purchase of an Amazon service. The message was shown to

a random subset of customers during a visit to Amazon.com on

desktop browsers. The message was constructed from 5 widgets:

a title, an image, a list of bullet points, a thank-you button, and a

no-thank-you hyperlink (Fig. 1). Each widget could be assigned one

of two alternative contents except for the image which had three

alternatives. The message thus had 48 total variations.

In addition to MVT2, we included two baseline algorithms in this

experiment. The first is ND
-MAB which is a multi-armed bandit

model with 48 arms (see Eq. 10). The second baseline is a model

where each of the D widgets is optimized independently, referred

to as D-MABs. Here, each slot i is modeled as a separate Bayesian

linear probit regression where widget i has linear model:

BTAW =W
0 +W 1

i (A). (15)

The content of widget i is chosen by Thompson sampling on its

corresponding model.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1818

0 5 10 15 20

iterations until conversion

0

50

100

150

200

cl
im

bs

0 5 10 15 20

Maximum hill climbing iterations, K

0.0

0.2

0.4

0.6

0.8

1.0

P
(g

lo
ba

lo
pt

im
um

)

0 5 10 15 20

Maximum hill climbing iterations, K

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
eg

re
t

Figure 7: Performance of hill climbing as the number of it-
erations, K, is varied.

Note that the D-MABs algorithm is subtly different from MVT1.

While both models ignore interactions between widgets, the D-

MABs model does not train on a shared error signal. The purpose of

including D-MABs in this test was to compare MVT2 performance

to a simplistic model that does not consider the problem of layout

in a combinatorial way.

During the 12 day experiment, traffic was randomly and equally

distributed between these three algorithms. Traffic consisted of tens

of thousands of impressions per algorithm per day. Layouts were

selected in real-time using Thompson sampling, and the model

was updated once a day after midnight using the previous day’s

data. Note that only prediction happens online in real-time, while

updates are in batch, offline.

5.2 Analysis Of Results
Results of the experiment are shown in figure 8. We define the con-

vergence as the proportion of trials on which the algorithm played

its favored layout. A value of 1 means the algorithm always played

the same arm and so the model is fully converged. We see that

D-MABs converges to a solution in just 3 days followed by MVT2

at 9 days. The ND
-MAB algorithm shows very little convergence

throughout the course of the experiment. While convergence is

important for choosing the optimal layout, a longer convergence

period may be tolerated if the regret is low. We plot a normalized

success probability as a function of experimental day. For example,

a normalized success probability of 0.2 indicates a 20% increase

over the performance of the median layout. We see that MVT2’s

success rate is comparable to D-MABs by day 6.

The results from this experiment indicate a non-combinatorial

approach can be successful. However, the multivariate MVT2 ap-

proach allows us to maintain robustness for possible interaction

effects at only a modest cost for regret and convergence time. The

lack of convergence for ND
-MAB makes this multi-armed bandit

algorithm inappropriate for fast experimentation.

For comparison with traditional A/B tests, we also performed

a power analysis for a 48 treatment randomized experiment con-

ditioned on our success rate and traffic size. In order to detect a

5% effect with p < 0.05 and β < 0.20, we estimate that such an

experiment would require 66 days [10].

Finally we note that the winning layout for this experiment

showed a 21% lift over the median layout and a 44% lift over the

worst performing layout. If different content had a negligible im-

pact on customer behavior, no algorithmic approach would provide

much benefit in optimization. However, given these surprisingly

large lifts, there appears to be a large business opportunity in com-

binatorial optimization of web page layouts.

5.3 Hill climbing analysis
The MVT2 algorithm in this experiment used hill climbing with

S = 5 random restarts and a maximum of K = 48 iterations to

choose which layout to display. To better understand the search

performance on a model trained on real data, we ran simulations

of hill-climbing for this fully-trained on real-data MVT2 model

(Fig. 9). With 1000 simulations and no restarts, hill-climbing con-

verged to a local optimum after 24 iterations on average, with

p(дlobal optimum) = 0.937. This probability is greater than in the

simulation experiments, suggesting real-world data may have fewer

local optima. If we had set K = 15 and S = 2 , then the algorithm

would have achieved p(дlobal optimum) = 0.95 at 50% of the effort

of an exhaustive search.

5.4 Widget interactions
The fact that both MVT2 and D-MABs converged to the same

solution suggests that interactions between content may have been

weak in our experiment. We verified this through a likelihood ratio

test [6] comparing goodness-of-fit for models with different levels

of interaction between widgets. In addition to MVT2, we tested two

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1819

2 4 6 8 10

Day

0.0

0.2

0.4

0.6

0.8

1.0

C
on

ve
rg

en
ce

D-MABs
MVT2
ND-MAB

2 4 6 8 10

Day

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

N
or

m
al

iz
ed

su
cc

es
s

pr
ob

ab
ili

ty

D-MABs
MVT2
ND-MAB

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25

Normalized success probability

0

2

4

6

8

10

#
la

yo
ut

s

‘

Figure 8: Results of desktop experiment. Top and middle
panels show convergence and normalized performance for
each algorithm. Bottom panel shows reward of all layouts
normalized by median layout.

variations with different interaction levels: MVT1 with no pairwise

interaction terms, andMVT3with additional weights for each of the(D
3

)
N 3

possible third-order (three-way) content interaction. Each

model was trained on production data where the templates were

shown to customers uniformly at random. The likelihood ratio test

applied to MVT2 versus MVT1 and MVT3 versus MVT2 were both

insignificant (p > 0.05).

0 10 20 30 40 50

Maximum hill climbing iterations, K

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
eg

re
t

0 10 20 30 40 50

Maximum hill climbing iterations, K

0.0

0.2

0.4

0.6

0.8

1.0

p(
gl

ob
al

op
tim

um
)

Figure 9: Regret and probability of identifying global opti-
mum in fully trained model as a function of max iterations
for hill-climbing.

While we did not find significant 2nd or 3rd order interactions in

this experiment, this observation does not generalize. In a follow-

up experiment, we applied MVT2 to the mobile version of the

promotional page. The template for the mobile page consists of 5

widgets with 2 alternatives each for a total of 32 possible layouts.

In this case, we found that 2nd order (p < 0.01) but not 3rd order

effects were significant (Table 3). As it is often hard to determine in

advance the degree of interaction for a particular experiment, one

may want to at least include 2nd order interactions, and opt for a

multivariate bandit formulation.

Table 3: p-value of interaction effects in production experi-
ments. * denotes significance.

Interaction Desktop Mobile
2nd-order 0.2577 0.0096*

3rd-order 0.428 0.1735

6 DISCUSSION AND CONCLUSIONS
We present an algorithm for performing multivariate optimization

on large decision spaces. Simulation results show that our algorithm

scales well to problems involving 1,000s of layouts, converging in

a practical amount of time. We have shown the suitability of our

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1820

method for capturing interactions between content that are dis-

played together while also accounting for the effects of context. Our

algorithm balances exploration with exploitation during learning,

allowing for continuous optimization. It also searches efficiently

through an exponential layout space in realtime. We have applied

this approach to promoting purchases of an Amazon service where

we saw a large business impact after only a single week of experi-

mentation. We are actively deploying this algorithm to other areas

of Amazon.com to solve increasingly complex decision problems.

Several extensions to this work could potentially enhance its

performance. One limitation of the current framework is that the

widget contents are represented as identifiers. This prevents gener-

alization between related creatives, such as small variations on a

common theme or message. It is straight-forward to featurize con-

tent so that the model can learn what properties of the content are

most important. This could include adding positional features rele-

vant to how users browse two-dimensional web pages [9]. Second,

we note that higher order input features such as widget interac-

tions should be regularized more heavily than lower order features

to reduce parametric complexity. The complexity of representing

interactions could also be reduced through techniques such as fac-

torization machines [18] and neural networks [3] that produce

low-dimension embeddings out of high-order features. Finally, it

still remains to understand the impact of using hill climbing to

approximate Thompson sampling. How does this procedure impact

regret? One could establish a regret bound that is then tightened

through search strategy refinements.

More generally, our algorithm can be applied to any problem

that involves combinatorial decision making. It allows for exper-

imental throughput and continuous learning that is out of reach

for traditional randomized experiments. Furthermore, by using a

parametric modeling approach, we allow business insights to be

extracted directly from the parameters of the trained model. Alter-

native content for a web page is typically inexpensive to produce,

and this algorithm allows for fast filtering-out of poor choices. Mul-

tivariate optimization may thus encourage the exploration of riskier

and more creative approaches in the creation of online content.

ACKNOWLEDGMENTS
The authors thank Charles Elkan, Sriram Srinavasan, Milos Curcic,

Andrea Qualizza, Sham Kakade, Karthik Mohan, and Tao Hu for

their helpful discussions.

REFERENCES
[1] Shipra Agrawal and Navin Goyal. 2012. Analysis of Thompson Sampling for the

Multi-armed Bandit Problem.. In COLT. 39–1.

[2] Shipra Agrawal and Navin Goyal. 2013. Thompson Sampling for Contextual

Bandits with Linear Payoffs. In Proceedings of the 30th International Conference
on Machine Learning (ICML). JMLR, Atlanta, Georgia, 127–135.

[3] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation

learning: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence 35, 8 (2013), 1798–1828.

[4] George EP Box, J Stuart Hunter, and William Gordon Hunter. 2005. Statistics for
experimenters: design, innovation, and discovery. Vol. 2. Wiley-Interscience New

York.

[5] Sebastien Bubeck and Nicolo Cesa-Bianchi. 2012. Regret Analysis of Stochastic

and Nonstochastic Multi-armed Bandit Problems. Foundations and Trends in
Machine learning 5, 1 (2012), 1–122.

[6] George Casella and Roger L Berger. 2002. Statistical inference. Vol. 2. Duxbury
Pacific Grove, CA.

[7] Nicolò Cesa-Bianchi and Gábor Lugosi. 2012. Combinatorial bandits. J. Comput.
System Sci. 78, 5 (2012), 1404–1422.

[8] Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of thompson

sampling. In Advances in neural information processing systems. 2249–2257.
[9] Flavio Chierichetti, Ravi Kumar, and Prabhakar Raghavan. 2011. Optimizing

two-dimensional search results presentation. In Proceedings of the fourth ACM
international conference on Web search and data mining. ACM, 257–266.

[10] Shein-Chung Chow, HanshengWang, and Jun Shao. 2007. Sample size calculations
in clinical research. CRC press.

[11] Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. 2008. Stochastic Linear

Optimization under Bandit Feedback. In Proceedings of the 21st Annual Conference
on Learning Theory (COLT). Helsinki, Finland, 355–366.

[12] Thore Graepel, Joaquin Q Candela, Thomas Borchert, and Ralf Herbrich. 2010.

Web-scale bayesian click-through rate prediction for sponsored search advertising

in microsoft’s bing search engine. In Proceedings of International Conference on
Machine Learning (ICML). Haifa, Israel, 13–20.

[13] V Roshan Joseph. 2006. Experiments: Planning, Analysis, and Parameter Design

Optimization. IIE Transactions 38, 6 (2006), 521–523.
[14] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-

bandit approach to personalized news article recommendation. In Proceedings of
the 19th international conference on World wide web. ACM, 661–670.

[15] ElderMagalhãesMacambira and Cid Carvalho de Souza. 2000. The edge-weighted

clique problem: Valid inequalities, facets and polyhedral computations. European
Journal of Operational Research 123, 2 (2000), 346–371.

[16] Karthik Mohan and Ofer Dekel. 2011. Online bipartite matching with partially-

bandit feedback. In Proceedings of NIPS workshop on Discrete optimization in
Machine Learning. Granada, Spain, 1–7.

[17] Houssam Nassif, Kemal Oral Cansizlar, Mitchell Goodman, and S. V. N. Vish-

wanathan. 2016. Diversifying Music Recommendations. In Proceedings of Machine
Learning for Music Discovery Workshop at 33rd International Conference on Ma-
chine Learning (ICML).

[18] Steffen Rendle. 2010. Factorization machines. In Data Mining (ICDM), 2010 IEEE
10th International Conference on. IEEE, 995–1000.

[19] Liang Tang, Romer Rosales, Ajit Singh, and Deepak Agarwal. 2013. Automatic

ad format selection via contextual bandits. In Proceedings of the 22nd ACM in-
ternational conference on Conference on information & knowledge management.
ACM, 1587–1594.

[20] Choon Hui Teo, Houssam Nassif, Daniel Hill, Sriram Srinivasan, Mitchell Good-

man, Vijai Mohan, and S.V.N. Vishwanathan. 2016. Adaptive, Personalized Diver-

sity for Visual Discovery. In Proceedings of the 10th ACM Conference on Recom-
mender Systems (RecSys). ACM, Boston, 35–38.

[21] Yue Wang, Dawei Yin, Luo Jie, Pengyuan Wang, Makoto Yamada, Yi Chang, and

Qiaozhu Mei. 2016. Beyond ranking: Optimizing whole-page presentation. In

Proceedings of the Ninth ACM International Conference on Web Search and Data
Mining. ACM, 103–112.

[22] Yisong Yue and Carlos Guestrin. 2011. Linear submodular bandits and their

application to diversified retrieval. In Advances in Neural Information Processing
Systems. 2483–2491.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1821

	Abstract
	1 Introduction And Background
	2 Problem Formulation
	2.1 Problem setting
	2.2 Probability model

	3 Multvariate Testing Algorithm
	3.1 Thompson Sampling
	3.2 Hill climbing optimization

	4 Simulation Results
	4.1 Simulated data
	4.2 Simulation experiments
	4.3 Hill climbing impact

	5 Experimental Results
	5.1 Experimental design
	5.2 Analysis Of Results
	5.3 Hill climbing analysis
	5.4 Widget interactions

	6 Discussion And Conclusions
	Acknowledgments
	References

