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Abstract

We describe an intelligent context-aware conversational sys-
tem that incorporates screen context information to service
multimodal user requests. Screen content is used for disam-
biguation of utterances that refer to screen objects and for
enabling the user to act upon screen objects using voice com-
mands. We propose a deep learning architecture that jointly
models the user utterance and the screen and incorporates de-
tailed screen content features. Our model is trained to op-
timize end to end semantic accuracy across contextual and
non-contextual functionality, therefore learns the desired be-
havior directly from the data. We show that this approach
outperforms a rule-based alternative, and can be extended in
a straightforward manner to new contextual use cases. We
perform detailed evaluation of contextual and non-contextual
use cases and show that our system displays accurate con-
textual behavior without degrading the performance of non-
contextual user requests.

1 Introduction

Voice powered personal assistants like Amazon Alexa,
Google Now and Apple Siri have become powerful among
consumers as they enable intuitive user-interfaces that re-
semble human communication. Natural human interaction
is to a large extend contextual, where interlocutors’ success-
ful communication often depends on a shared understanding
of their environment, that influences the semantics of the di-
alog. For example, interlocutors may refer to or act upon
objects or imply shared knowledge. Building intelligent as-
sistants that feel and act natural requires enriching conversa-
tional understanding systems with the ability to incorporate
context while processing a spoken user request.

Here we focus on screen content as the shared environ-
ment context for intelligent devices with access to a screen.
Our goal is to enable multimodal functionality where screen
content is used to interpret and disambiguate the user’s in-
tention and the objects they are referring to. For example,
a request like ‘select harry potter’ may refer to a book
or a movie, and the screen content can be used for dis-
ambiguation. ‘play the first one’ is a similarly ambiguous
anaphoric request that could refer to music, movies, news
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items on screen etc. We describe the system design and spo-
ken language understanding (SLU) methodologies that en-
able screen integration functionality, where the user can act
on screen objects using voice commands. We propose joint
modeling of text and screen context in a single SLU model
trained to optimize end to end semantic accuracy of the spo-
ken request. We show that our model is able to learn the
desired behavior directly from contextual training instances
and outperforms an alternative system with hand engineered
context rules. While there is some relevant multimodal work
on combining text with speech emphasis features for conver-
sational understanding (Ning et al. 2017) and on using gaze
and linguistic information for coreference resolution (lida,
Yasuhara, and Tokunaga 2011), to our knowledge there is
no prior work on developing a multimodal conversational
system for screen integration.
In summary, the main contributions of this work are:

e We describe the design of a context aware virtual agent
that allows understanding and executing multimodal user
requests. We use a flexible representation of the seman-
tic content of the user’s request and corresponding screen
content cues that cover a wide range of visual use cases.

e We propose deep learning architectures that jointly model
the input user utterance and the screen information and
are trained to optimize end to end semantic accuracy. We
show that our models can learn from data the desired be-
havior and can outperform a hand engineered rule-based
system for screen integration.

e We perform detailed analysis of our system for contextual
and non-contextual use cases to ensure improvement in
the former without degradation in the latter, and discuss
the effect of different types of screen features.

2 Related Work

Deep learning advances on Recurrent Neural Networks
(RNNs) and Long Short Term Memory networks (LSTMs)
(Hochreiter and Schmidhuber 1997), (Gers, Schraudolph,
and Schmidhuber 2002), and the availability of fast GPU
computing resources, have made such deep learning meth-
ods state of the art for many natural language process-
ing tasks (NLP), such as sequence tagging (Chung et al.
2014), (Ma and Hovy 2016), sequence to sequence model-
ing (Sutskever, Vinyals, and Le 2014), and sentence classi-



fication (Liu et al. 2015) (Socher et al. 2013). The multi-
task learning paradigm is also very common in the litera-
ture, where a network is jointly trained to optimize perfor-
mance for multiple related tasks, and learns to exploit bene-
ficial correlations across tasks (Collobert and Weston 2008),
(Liu, Qiu, and Huang 2017). Finally, convolutional neural
networks (CNN5s) are common for image classification (Le-
Cun et al. 1998) (Krizhevsky, Sutskever, and Hinton. 2012),
and text processing and classification (Kim 2014) (Kalch-
brenner, Grefenstette, and Blunsom 2014).

Regarding the use of contextual information, related work
in language modeling (LM) succesfully uses topics (Lau,
Baldwin, and Cohn 2017), document history (Ji et al. 2015)
or discourse information (Ji, Haffari, and Eisenstein 2016).
These different types of context are used as an additional
conditioning input to an LSTM-LM, leading to increased
accuracy. Hierarchical LSTMs have also been proposed for
modeling conversational context within and between utter-
ances in a dialog (Sordoni et al. 2015), (Serban et al. 2016).

Regarding semantic understanding for intelligent assis-
tants, recent work includes the use of deep convex neural
networks (Deng et al. 2012), LSTMs with attention (Liu and
Lane 2016), and multitask LSTMs (Ning et al. 2017). Fi-
nally, there is little prior work on multimodal conversational
understanding systems, including combining speech content
and speech emphasis for recognizing the user’s intent (Ning
et al. 2017), combining speech content and gaze for coref-
erence resolution (Ilida, Yasuhara, and Tokunaga 2011) and
combining speech content and hand gestures for coreference
resolution (Eisenstein and Davis 2006).

3 Context Aware Conversational
Understanding

We focus on Amazon Alexa, a voice operated conversational
agent that interacts with the user to fulfill requests for vari-
ous functionality. Alexa is part of a speech powered device
with a screen, where the screen can be used to display con-
tent relevant to the user’s request. The user interacts with
Alexa through spoken commands, which are recognized by
our Automatic Speech Recognition (ASR) module, and their
semantic content is parsed by our Spoken Language Under-
standing (SLU) module. Requests are routed to the appro-
priate application layer according to their semantic content.
For example, a request like ‘search for harry potter show-
times in palo alto’ would be routed to the Movie applica-
tion layer to service the request. As a result, Alexa will re-
spond to the user verbally and relevant movie showtimes
will be displayed on the screen. Additionally, the applica-
tion layer will return to the SLU module information about
the current screen content. This enables building a screen-
aware SLU and extending the agent’s functionality to ser-
vice essentially multimodal requests. For example, the user
can refer to objects on the screen (‘select the second one’)
or request particular screen content (‘play harry potter’). The
SLU would consider screen content to disambiguate the ut-
terance semantics and route the request appropriately to the
Book, Movie or other application layer.

Specifically, the SLU module performs intent detec-

tion and slot tagging of the user’s request. Consider-
ing the earlier example, the intent detection unit per-
forms utterance classification for intent categories such
as SearchAction<MovieScreening>. The sequence tagging
unit tags relevant semantic tokens, called here slots or en-
tities, e.g., Movie.name="‘harry potter’ and City.name="palo
alto’. Our semantic representation is detailed in Section 4.1.

Assume an utterance X = 1,2, - - - 7, a set of intent
labels I € {I;}, and a set of slot labels S € {S; }U{Other}.
We model P(I|X) and P(S|X), where S = Sy, 55,...57
Additionally, assume screen context information C' as a set
of M key-value pairs, ie., C = {(Cp,,Crp )1,
where M is the number of items on screen. The key is a
contextual entity type identifier, such as ‘Onscreen_Movie’
while the value is the contextual entity name, like ‘harry
potter’. For example, for a screen that displays two movies,
the context could be (‘Onscreen_Movie’, ‘harry potter’)
and (‘Onscreen_Movie', ‘interstellar’). The number M
is variable and application specific, and the order of the
items is not available to the SLU. This work proposes meth-
ods for context-aware semantic understanding, that allow us
to model P(I|X,C) and P(S|X,C).

Importantly, our model should adapt to the availability of
relevant screen context, i.e., Alexa should learn to consider
screen context when it is present and relevant, but ignore
screen context when it is absent or irrelevant. This is desir-
able because the screen may be turned off or disconnected,
or the user’s request may be irrelevant to the screen con-
tent. The enriched context-aware functionality of our agent
should not come at the expense of non-contextual requests.
We consider both contextual and non contextual use cases,
detailed in Table 1, where our goal is to improve perfor-
mance on the former without degrading the latter.

Table 1: Contextual and non-contextual example use cases.

Description User Desired
P command behavior
Contextual Example Use Case
Contextis | Screen shows Movies Alexa plays

present and | including Harry Potter | movie Harry Potter
relevant ‘play harry potter’

Non Contextual Example Use Cases

No screen content
‘what is the weather’

Context is
not present

Alexa gives
weather forecast

Screen shows movies
‘what is the weather’

Alexa gives

Context is weather forecast

Screen shows books
‘play interstellar’

Alexa plays

not relevan .
ot relevant movie Interstellar

4 Data and Representation
4.1 User Interaction Data and the AMRL

Our dataset contains user interactions with Alexa for vari-
ous functionality, including playing music, movies, videos



or books, movie showtimes, local search queries, weather
forecast, calendar information. For annotating our data we
developed the Alexa Meaning Representation Language
(AMRL), an internal formalism for rich semantic annota-
tion. Examples of AMRL annotation are presented in Table
2 for both contextual and non contextual use cases.

Alexa MRL Examples
utterance 1  play the movie harry potter
intent PlayAction<Movie>

entities ‘movie’— Movie.type

‘harry potter’— Movie.name

utterance 2 play the first one

screen screen shows movies
intent PlayAction<Movie>
entities “first’— Ordinal.value

‘one’— Movie.reference

utterance 3 select the first one

screen no screen content

intent ChooseAction<Thing>

entities “first’— Ordinal.value
‘one’— Thing.reference

Table 2: Examples of AMRL annotation for non-contextual
and contextual use cases

Intents are represented as actions applied on enti-
ties. For entity annotation, our representation distin-
guishes between entity types (Movie.type=‘movie’), entity
names (Movie.name="‘harry potter’), and entity references
(Movie.reference=‘one’). Utterances 2 and 3 of Table 2 are
examples of anaphora, where screen content is used to dis-
ambiguate the reference ‘one’ in the former utterance, while
the reference in the latter utterance is under-specified and we
tag it with the generic entity label T'hing.

4.2 Screen Content Information

We examine two groups of visual use cases: selecting an ob-
ject on the screen (ChooseAction< - >) and playing an ob-
ject on screen (PlayAction< - >), where applicable. These
actions can cover functionality from various domains de-
pending on the type of object that is displayed. In Table 3,
we give a few examples of contextual functionality and cor-
responding screen information. Our screen object data range
across domains including music, books, movies and show-
times, videos, shopping, calendar, local search.

S Methodology
5.1 Non Contextual Multitask BiLSTM

We first describe our non contextual architecture for in-
tent classification and slot tagging. We employ Bidirectional
Long Short Term Memory neural networks (BiLSTMs) for
both the slot tagging and the intent classification tasks of
our SLU unit. The LSTM unit, proposed by (Hochreiter and
Schmidhuber 1997), is an RNN extension, that is designed
to handle long term dependencies through the use of an input

Table 3: Examples of contextual functionality per domain
and corresponding example screen content.

Domain and Screen \ Intents and Entities

Movies ChooseAgtion<Moyie>
PlayAction<Movie>
(Onscreen_Movie, Movie (.name, .type,
‘harry potter’) .reference)
Books ChooseA(.:tion<Book>
PlayAction<Book>
(Onscreen_Book, Book (.name, .type,
‘harry potter’) .reference)
LocalSearch ChooseAction<LocalBusiness>
(Point_Of _Interest, LocalBusiness (.name, .type,
‘starbucks’) .reference)

gate, an output gate, a forget gate and a memory cell. Here,
we use the LSTM variant with peephole connections (Gers,
Schraudolph, and Schmidhuber 2002). Given a sentence in-
put X = x1, - - - x7, the LSTM computes a representation
at each ¢, which is denoted as r; = ¢(x¢, 71—1).

In our setup, each input word z; is embedded into a
E = 300 dimensional embedding, where the embeddings
are estimated from our data. Additionally, we use pre-trained
word embeddings as a separate input, that allows incorporat-
ing unsupervised word information from much larger cor-
pora. Our network structure is shown in Fig. 1b (inputs (a)).

We use BiLSTM, which consists of a forward and a
backward LSTM. For slot tagging, we concatenate the two
LSTM representations at each time step ¢ before passing to
a softmax. For intent classification, we concatenate the full
sentence representation obtained from the final timestep of
the forward LSTM and the first timestep of the backward
LSTM and pass them through a softmax for classification:

slot __ _ forw back _intent __ . forw back
Ty =T Dry T, =7Tr b ry

Sy = softmaz(W,rs't 4 by)
I= so ftmax(Wir™ent 1 p,)

where & is the concatenation operator.

While we can train two separate BiLSTMs for intent clas-
sification and slot tagging, we use multitask learning to
jointly learn a shared representation for both tasks. Mul-
titask learning leverages correlations between related tasks
to learn joint representations that are informative across the
tasks. It is relevant in our case since the slots and the intent
are related sub-components of the underlying semantics of
the user’s request. Therefore, we use a single B-LSTM to
learn both tasks, i.e, ¢ = ¢™"te™t = gpsiot,

Empirically, we have observed that this multitask setup
achieves better results than separately training intent and slot
models, with the added advantage of having a single model,
and a smaller total parameter size. Going forward, we will
use this architecture as our base model, which will be aug-
mented with contextual features.
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Figure 1: Left: Example of screen content showing two movies and the corresponding key content indicator feature, and value
content indicator features. Right: Model architecture. Utterance inputs (non-contextual) are denoted as inputs (a). Key context
features are input (b). Value context features are inputs (c), and value context features processed by a CNN are inputs (d).

5.2 Context Aware Multitask BiILSTM

Encoding entity type context using key context features
The screen context information C' is provided as a set of
M unordered key-value pairs, where M is variable, i.e.,

— m m M m
C = {( ey M we) fme1- The keys 1o, come from a

limited set of values, each representing a distinct visual func-
tionality and typically originating from a separate applica-
tion (domain) layer, e.g., ‘Onscreen_Movie’ for the Movies
domain. For many use cases, such as anaphora to a screen
object, the keys encode all the the visual information re-
quired to disambiguate a user’s request

We assume a set of known possible keys of size K. This is
not restrictive, because adding a new key essentially corre-
sponds to adding new visual functionality, which requires
re-training the SLU model anyway, to support the added
functionality. We create an indicator feature vector of size
K, where ones denote the presence, at least once, of the
corresponding key in the screen context C', while zeros de-
note absence of that key. This feature is illustrated in Fig.
la, and will be referred to as Key context feature: Ciey.
We pass cpey at each ¢ as an additional input to the Bil-
STM model, as shown in Fig. 1b with input (b), there-
fore computing the context-aware sentence representation
Ty = ¢($ta Tt—1, Ckey):

Encoding entity name context using value context fea-
tures The key values C7;, . contain the entity names that
appear on the screen, such as book titles, movie names, etc.
This additional information could benefit the SLU model for
non anaphoric requests, where the user refers to a screen
object by name. It could also increase robustness to avoid
contextual false positives. Consider the request ‘play stone
roses’, for the music band ‘stone roses’, while the screen is

showing a list of movies. A model that only relies on the

key context feature might be too biased to tag ‘stone roses’
as a movie. The additional value information could help the
model ignore the irrelevant screen content, which does not
match the utterance text.

Given the limited screen size, we assume a maximum
number N of items that can appear simultaneously on the
screen, here N = 5. Therefore, our feature allocates maxi-
mum N positions, each one filled by C7,, .. Some positions
will be empty, if there are less than N items on screen. In
our architecture, we use pre-trained word embeddings for
Ces Where multi-word values are computed by averag-
ing the embeddings per word. For embedding size F, the
total feature vector size is N x E. The corresponding Value
context feature Cyqpqe 18 llustrated in Fig. 1a, and added as
an extra input to the model r, = @(z¢, 7t—1, Chey; Cvalue):

The order of the values in the feature does not matter, as
we only care about the presence of a string value anywhere
on the screen. To make our model ignore the order, we ran-
domize the order of the N positions of the value context
feature for a training instance, across different epochs of
model training. Empirically, we observe that this random-
ization process leads to better performance. Our model is
shown in Fig. 1b (inputs c).

5.3 Context Aware Multitask CNN+BiLSTM

Encoding entity name context using value context fea-
tures Using c,q4e as described earlier requires computing
weights for each of the IV input positions. However, for our
contextual use cases, there can be at most one value position
that is relevant to the utterance. For example, for ‘play inter-
stellar’, there may be at most one relevant matching screen
value C",  =‘interstellar’. Ideally, we want to scan through
the screen values, and the select the one with maximum rel-
evance to our task.



We note that this operation can be implemented through
a standard convolutional layer, followed by a max pool-
ing layer. The typical convolution operation for images in-
volves a 2D filter that is applied consecutively across the
image to compute location invariant features, keeping filter
weights shared. Similarly, our context values can be repre-
sented by a N-by-E matrix, where each row is a screen en-
tity value. As before, some rows will be zero if there are less
than N items on screen, and we average the word embed-
dings of multi-word values. We apply convolutional filters
of size 1-by-F, with a stride of one, that scan each value
consecutively, followed by a max-over-/N max pooling op-
eration to select the most relevant value. Our strategy is il-
lustrated in Fig. 1a (bottom). The extracted context features
are added as an extra input to our BiLSTM model: r;, =
(24,711, Chieys YEO™ (Cpatue) ), Where 19C°"? denotes the
convolution and max pooling operation. The model is illus-
trated in Fig. 1b (inputs d). Our method is similar to convo-
lution for text classification tasks (Kim 2014), where convo-
lution is applied across consecutive words in a sentence. One
difference is that our filters need to be 1-dimensional instead
of spanning more than one values, because entity values on
screen are unrelated and in random order. In contrast, con-
volution over a sentence can span many words to convey
consecutive word information.

5.4 BiLSTM + Contextual Reranker

We consider an alternative strategy for context-aware SLU
using a two-stage pipeline where a contextual reranker is
applied on top of the base non-contextual BiLSTM multi-
task model. The reranker module contains hand engineered
rules that encode the desired behavior for each of the con-
textual use cases. This represents a reasonable alternative
where contextual logic is directly encoded through rules.
To strengthen this approach, we associate each rule with
a weight optimized on a subset of the data. We will com-
pare our context-aware BiLSTM architectures with this rule
based alternative, to understand to what extend our joint
utterance-context models can learn the desired behavior di-
rectly from the data, and whether they can reach and poten-
tially outperform the hand designed contextual rules.

The reranker takes the n-best lists from the slot tagging
and the intent classification results of the non-contextual
BiLSTM model, and increases the scores of certain in-
tent or slot labels depending on the screen context keys
{C,’c’éy M_. . The logic is that given a screen content (‘On-
screen_Movie’), some slot or intent labels should be up-
weighted (Movie). An example rule for Movie contextual
functionality is shown in Example 1. To avoid false posi-
tives that would cause degradation of non-contextual func-
tionality, as defined in Table 1, we also include rules to de-
crease the default probabilities of certain contextual intent
and slot labels. The logic here is that the probability of cer-
tain contextual labels, e.g., ChooseAction<Movie>, is low
by default, unless a related entity appears on screen (it does
not make sense to choose an object if the screen is empty).
The increase and decrease weights, « and 3 respectively, are
parameters that are estimated through grid search on a val-
idation set. Regarding the choice of ‘n’ in the n-best list,

we set n = 10, which empirically gave good performance.
The contextual re-ranker computes updated scores and re-
ranks the slot and intents n-bests lists accordingly. The top
reranker output is used for final SLU recognition.

Example 1: Example contextual reranking rule for Movie

# default down-weight rule
P(ChooseAction<Movie>)
< P(ChooseAction<Movie>) —f
# context dependent up-weight rule
if screen keys contain Onscreen_Movie then
P(Movie.name) < P(Movie.name) +«
P(Movie.type) - P(Movie.type) +«
P(Movie.reference) < P(Movie.reference) +«
P(PlayAction<Movie>)
+ P(PlayAction<Movie>) +«
P(ChooseAction<Movie>)
< P(ChooseAction<Movie>) +«
end if

6 Experiments
6.1 Data preparation

We use a large set of non contextual utterances from user
interactions with Alexa on devices without a screen, and
a smaller dataset of contextual utterances from user inter-
actions where a screen is available. The train and test data
sizes for non contextual use cases are on the order of 100K
utterances, while for contextual use cases they are on the
order of 10K utterances. The dataset used for these experi-
ments is a fraction of our production data and covers a range
of domain functionality including music, books, movies and
showtimes, videos, calendar events, local search, shopping,
and general commands. In total there are |S| = 105 distinct
slot labels for the slot tagging task and |I| = 108 distinct
intent labels for the intent classification task. The number
of screen content keys in our study is X' = 8. We used a
train-dev split of 70%-30%, where the dev set was used for
optimizing the deep learning models as well as tuning the
reranker parameters «, [3.

All our deep learning models were trained on the same
amount of data. For the non-contextual model we don’t
use any screen content features. For contextual models, we
used the relevant screen information that is available for
the contextual utterances to compute Cyey and cyqiye. For
non-contextual utterances, we applied the following pre-
processing strategy. For half of the utterances, we set all con-
textual features to zero to simulate the case where a screen
is not available (turned off, disconnected, etc.). For the other
half, we paired the utterance with a random screen content
C={(Ci%, M o) M, and extracted the contextual key
and value features from it. This is to simulate the case of ir-
relevant screen context. Context values on screen and entity
names spoken by the user both have a potentially unlimited
number of values, therefore we can assume that the likeli-
hood of the screen content randomly matching the user com-
mand is very low. The random context facts were sampled
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Figure 2: Numbers on bar graphs show relative % improvements compared to non-contextual baseline

from a pool of much larger, un-annotated user interactions
with Alexa on a device with screen.

6.2 Experimental Setup

We examine performance of the non-contextual model, as
well as four contextual models, all described in section 5:

o non-context BiLSTM Described in Section 5.1, and il-
lustrated in Figure 1b, inputs (a)

e non-context BILSTM + contextual Reranker. Two
stage strategy with reranker described in Section 5.4

o context-BiLSTM(keys) Described in Section 5.2, using
only the key contextual features. Illustrated in Fig. 1b, in-
puts (a)+(b)

e context-BiLSTM(keys,values) Described in Section 5.2,
using both the key and value contextual features. Illus-
trated in Fig. 1b, inputs (a)+(b)+(c)

o context-CNN+BiLSTM (keys,values) Described in Sec-
tion 5.3, using both the key and value contextual features.
Illustrated in Fig. 1b, inputs (a)+(b)+(d)

All our deep learning models were trained end-to-end us-
ing stochastic gradient descent. Models were regularized
using dropout and L2. We used word2vec pre-trained em-
beddings of size =300 downloaded from (Mikolov ). For
the context-BiLSTM (keys,values) model we use a hidden
layer of size H between the context value feature vector and
the BiLSTM, see Fig. 1b. Empirically, we chose H = 200
while the input value vector is of size N x E'=5x300. Value
inputs at each of the 5 positions are shuffled between train-
ing epochs, as described in 5.2, which led to better perfor-
mance. For the context-CNN+BiLSTM(keys,values), we
used I' = 100 filters for the convolutional layer. We also
found that adding a ReLu non-linearity after the max pooling
operation performs slightly better. For the non-context BiL.-
STM + contextual Reranker, the reranker parameters o
and 8 were chosen based on grid search in [0, 1], to optimize

the dev set performance for slots and intents. Performance
for slot tagging and intent classification was measured using
the F1 score. We report both micro-F1 and macro-F1, the
former giving a picture of our overall system accuracy while
the latter giving a picture of performance at the long tail of
infrequent intents and slots.

6.3 Results and Discussion

Results for all models are presented in Figures 2a and 2b, for
micro-F1 and macro-F1 respectively. Each plot contains F1
for intents and slots separately. Looking from left to right,
plots show performance for contextual and non-contextual
test sets separately. We want the contextual models to im-
prove the performance of the contextual test sets, without de-
grading the performance of the non contextual test sets. For
all contextual models, the numbers above the bar plots show
the percentage of relative change of the model with respect
to the non-contextual BILSTM model. Positive changes in-
dicate performance improvement.

Looking at the contextual use cases, on the left of Fig. 2a,
where we would expect to see the effect of contextual mod-
eling, we indeed notice a significance performance increase,
up to 26% rel. improvement for intents and 4% rel. improve-
ment for slots, compared to the non-contextual model. The
improvement is most pronounced for contextual intents, for
which the base non-contextual model has low accuracy. This
is because of the large number of possible valid intent labels
for a given ambiguous contextual request (‘select number
two’ can be labeled as any of ChooseAction< - > ), which
makes screen content necessary for disambiguation. Finally,
we observe that the performance of non-contextual intents
and slots does not degrade, see Fig. 2a (right), which means
that non contextual functionality is not negatively affected.
The overall micro-F1 performance over both contextual and
non-contextual test sets, is around 95% for intents and 86%
for slots across all contextual and non-contextual models,
hence does not degrade when introducing contextual model-



ing. Looking at the macro-F1 performance of Fig. 2b, we no-
tice similar trends. The relative improvements of our contex-
tual architectures are significantly more pronounced, which
indicates that our context modeling benefits the most the
long tail of infrequent contextual intents and slots.

Compared to the two-stage strategy with the rule-based
reranker, our contextual BiLSTMs achieve higher perfor-
mance in context use cases. Our models are able to learn
more complex contextual behavior that is optimized directly
on the data, compared to the hand designed reranker logic.
Additionally, it is straightforward to scale our modeling to
new functionality by adding new contextual use cases to our
data, while a rule based system requires more manual main-
tenance. While we could have pushed reranker performance
a bit higher by optimizing separate weights per rule (o, 3;)
such a strategy would not be scalable as contextual func-
tionality increases (grid search on this space would become
unscalable), and was therefore out of scope.

Comparing the use of the simpler key context features,
over combination of both key and value context features,
we observe that the key context feature is sufficient for
achieving most of the performance increase (e.g., see Bil.-
STM(keys) vs BiLSTM(keys,values)). Indeed, the majority
of our contextual data are requests for screen objects by ref-
erence (‘select the second one’) or by order (‘select num-
ber two’), which can be disambiguated through the key fea-
ture alone. Requests where the value feature is important for
disambiguation are quite rare, and typically include cases
where the user requests an entity name which is irrelevant
to the objects that appear on screen (see example utterance
2 in Table 4 in the next section). As a result, the use of
value context features results in a small performance in-
crease over using just key context features, and adds more
robustness to our models. We would expect the relative im-
portance of the value feature to increase, as contextual user
interactions with Alexa become richer and more complex,
including more frequent references by object name. Finally,
between the context-BiLSTM(keys,values) and the context-
CNN+BiLSTM(keys,values) models, the former has a small
advantage.

6.4 Example Contextual Results

In Table 4, we illustrate examples of the behavior of the pro-
posed contextual joint BILSTM models, and the effect of
key and value screen features. Utterance 1 illustrates a case
where screen context successfully disambiguates a reference
to a screen object, while the non-contextual model just as-
signs the most frequent viable intent label from the train-
ing data. Utterance 2 is an example music request while the
screen is showing movies. While the non-contextual model
correctly classifies the intent, the contextual BiLSTM with
key features is misleaded by the screen context and misclas-
sifies the intent as a movie request. Adding value context
features to our BILSTM models helps recover from this error
by capturing the fact that screen content is irrelevant. This
illustrates the usefulness of value features in adding robust-
ness and reducing false positives. Utterance 3 shows an ex-
ample of successful slot tagging for the Book ‘redemption’
using screen context. Utterance 4 is a request for selecting

an event that does not appear on screen. The non contextual
model defaults to correctly tagging Event.name="‘surgery’,
while the contextual models, misleaded by the empty screen,
fail to tag ‘surgery’ as a slot. The user intention is unclear,
and may refer to a calendar event creation earlier in the di-
alog. This illustrates a failure for our contextual model, that
might be remedied by adding more contextual information
such as conversation history.

Intent classification examples

Utterance 1 play the third one

Screen screen shows movies
Ground Truth PlayAction<Movie>
Non-context BILSTM  PlayAction<MusicWork >
Context BILSTM(k) PlayAction<Movie>

Context BiLSTM(k, v) PlayAction<Movie>

Utterance 2 play cameron
Screen screen shows movies

Ground Truth PlayAction<MusicWork>
Non-context BILSTM  PlayAction<MusicWork >
Context BILSTM(k) PlayAction<Movie>

Context BILSTM(k, v)  PlayAction<MusicWork >
Slot tagging examples

Utterance 3 play redemption
Screen screen shows books
including redemption
redemption—Book.name
redemption
—MusicWork.name
Context BILSTM(k) redemption—Book.name
Context BILSTM(k, v) redemption—Book.name

Ground Truth
Non-context BILSTM

Utterance 4 select surgery

Screen empty screen

Ground Truth surgery—Event.name
Non-context BILSTM  surgery—Event.name
Context BiLSTM(k) surgery— not tagged as slot

Context BILSTM(k, v)  surgery— not tagged as slot

Table 4: Results for non-contextual and contextual models.
(k) denotes (keys) and (k,v) denotes (keys, values)

7 Conclusions and Future Work

We presented the design of a context aware conversational
agent that enables multimodal user requests for screen con-
tent integration. We proposed deep learning architectures
that jointly model utterance content and the screen context,
and are trained end-to-end to maximize semantic accuracy
for slot and intent recognition. We compared our end-to-end
approach with a hand engineered rule-based method, where
the rules encode the desired user experience, and showed
that our system outperforms this rule-based alternative. Our
approach is naturally extensible to new visual use cases,
without requiring manual rule writing. Finally, we exten-
sively evaluated the performance of our proposed method in
both contextual and non contextual use cases, and verified



that the contextual awareness of our models does not cause
a degradation of non contextual functionality. In future, we
plan to extend our visual features to encode screen object
locations for multiple object types displayed simultaneously
on screen (e.g., both books and movies). We will also ex-
plore additional context cues such as conversation context.
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