
Data selection and semi-supervised slot tagging for artificial intelligent

agents

Minmin Shen

Amazon Alexa
{shenm

James Zhu

Amazon Alexa
jameszhu

Suranjit Adhikari

Amazon Alexa
suranjit

Angeliki Metallinou

Amazon Alexa
ametalli}@amazon.com

Abstract

We propose a semi-supervised learning frame-
work to boost the performance of slot tagging
in the low resource case, where we only have a
small labeled target dataset available for model
training, but we have access to a large un-
labeled source dataset. Our framework con-
sists of two components: first performing data
selection to find a subset of the source data
that is semantically similar to the target data,
and second, training the model using both se-
lected and target data through a combination of
semi-supervised training techniques, inspired
from self-training and self ensembling. We ap-
ply our techniques to a challenging slot tag-
ging setup for a commercial artificial intelli-
gent agent where unlabeled source data origi-
nates from largely different domains compared
to the target data. We empirically show that
our proposed techniques achieve up to 7% rel-
ative gain in low resource slot tagging com-
pared to a strong pretrained model fine-tuned
on target training data.

1 Introduction

Artificial intelligent agents have become
widespread and popular among consumers
as they facilitate practical everyday tasks, such as
question answering, playing media, etc., through
intuitive, voice-powered interfaces. Their popu-
larity relies not only on correctly recognizing a
user’s request, but also on continuously expanding
the range of functionality that they can service,
so that they become increasingly useful. At
the same time, there is a range of commercial
services, such as the Alexa Skills Kit by Amazon
(Kumar et al., 2017) or DialogFlow by Google
(DialogFlow), that enable developers to build
their own custom natural language understanding
(NLU) functionality for artificial agents.

The NLU models that power this functional-
ity typically require large amounts of labeled data

to reach high accuracy. However, many practi-
cal NLU tasks in commercial settings are low re-
source in terms of labeled training data, especially
when a new domain is being developed. At the
same time, in commercial artificial agents, there
are typically large amount of unlabeled text data
from the output of the Automatic Speech Recogni-
tion (ASR) engine, obtained through interactions
between the user and the agent. As a result, semi-
supervised methods have been exploited to lever-
age large unlabeled or partially labeled datasets for
improving performance in low resource settings
(Ruder and Plank, 2018).

In this work, we focus on developing semi-
supervised algorithms to improve slot tagging
(ST) for a commercial artificial agent. The ST
component of an NLU system is responsible for
recognizing entities of interest, also called slots, in
a user’s request, such as people names, song titles,
locations, dates etc. This is typically done through
sequence tagging by employing neural network
based architectures (Goyal et al., 2018; Liu and
Lane, 2016; Huang et al., 2015). Correct recogni-
tion of slots is crucial for accurately servicing the
user’s request, therefore the ST component accu-
racy has a large impact on overall system accuracy.

Within the semi-supervised learning field, exist-
ing algorithms use the small labeled target dataset
to train one or multiple models in a supervised
way, and then apply those models to assign noisy
labels to a large set of unlabeled source task
data. Such techniques include self-training ap-
plied for parsing and word sense disambiguation
(McClosky et al., 2006; Yarowsky, 1995), tri-
training applied for text and web-page classifica-
tion (Zhou and Li, 2005; Ruder and Plank, 2018),
and recently proposed self ensembling applied for
image classification (Laine and Aila, 2016). While
such semi-supervised techniques have been suc-
cessful for image classification and text classifica-

tion problems, they have shown mixed or smaller
success for some sequence tagging tasks (Ruder
and Plank, 2018). This indicates that it may be
more challenging to incorporate noisily labeled
training data for sequence tasks like slot tagging,
compared to classification problems. Also, prior
work on semi-supervised learning often assumes
the source and target tasks are closely semanti-
cally related (McClosky et al., 2006), while for
dissimilar tasks such techniques may not be bene-
ficial (Asch and Daelemans, 2016). Nevertheless,
in many practical settings this assumption of se-
mantic relatedness does not hold. In our commer-
cial NLU setup, we have large amounts of unla-
beled ASR output text coming from a wide range
of functionality domains, potentially developed by
external developers for their custom NLU applica-
tions. User requested slots from such source func-
tionality may be very different from the target do-
main slots. Therefore, it becomes important to se-
lect a subset of the source data that is semantically
similar to the target data, such that the former can
be used in a semi-supervised setting without intro-
ducing out-of-domain noise in the slot tagger.

We address these challenges by introducing a
framework that combines semi-supervised learn-
ing and data selection to improve low resource
ST. We evaluate our method in target ST tasks
from a popular commercial artificial agent, where
source data comes from a large pool of ASR
text from hundreds of functionality domains. We
show that our proposed method is able to boost
ST accuracy, achieving up to 7.7% relative im-
provement (depending on the task and data setup),
compared to a strong pre-trained baseline model,
fine-tuned on the target training data. Overall,
our contributions are three fold. We propose
a semi-supervised learning framework that com-
bines techniques from self-training (Yarowsky,
1995) and self ensembling (Laine and Aila, 2016)
with data selection. We also present and compare
three different method variations for effectively
training a state-of-the-art ST model on a combi-
nation of labeled and unlabeled data. Finally, we
evaluate our method on data from a commercial
agent where the source data originate from largely
different domains and data distributions compared
to the target, and show the validity of our approach
in this challenging practical setup.

2 Related work

The semi-supervised learning paradigm assumes
access to a small labeled target training set, D

l

,
and a much larger unlabeled source dataset, D

u

,
and explores techniques for effectively leverag-
ing the unlabeled data D

u

when training mod-
els for the target task (Zhu, 2005). Typically,
one of semi-supervised learning techniques use D

l

to train one or multiple models in a supervised
way, and then apply those models to assign noisy
(pseudo) labels to the D

u

. Self-training is a clas-
sical semi-supervised technique that follows this
idea (Yarowsky, 1995; McClosky et al., 2006).
Self-training is an iterative algorithm where target
domain models are progressively trained on both
clean and noisy labels, and then applied for ob-
taining updated noisy labels.

More recently, semi-supervised learning tech-
niques that leverage deep learning models, have
been successfully applied for tasks like image
classification (Lee, 2013; Ding et al., 2018) and
slot filling (Bapna et al., 2017). In (Lee, 2013),
pseudo labels correspond to the class that has
the maximum predicted probability as the ground
truth label for unlabeled data. In this way, the
pseudo-labeled data are trained with existing la-
beled data in a supervised learning fashion, i.e.,
adding a cross-entropy loss of pseudo-labeled data
in the overall loss function. According to (Lee,
2013), this added loss is essentially entropy regu-
larization, a scheme favors low density separation
between classes by minimizing the conditional en-
tropy of class probabilities of unlabeled data. In
(Ding et al., 2018), self ensembling is applied to
train a deep neural network in the semi-supervised
learning manner. The main idea of this approach,
also called ⇧-method, is to regularize the network
to force it to generate approximately the same out-
put for the same input which undergoes data aug-
mentation and different dropout conditions. A
consistency loss is used to penalize the difference
of two model outputs obtained by evaluating the
same input after different data augmentation with
the same neural network under different dropout
conditions.

Alternatively, recent work relies on pre-training
robust neural network models on large amounts of
existing data sources, and then fine-tuning those
networks on the target training tasks (Peters et al.,
2018; Howard and Ruder, 2018; Goyal et al.,
2018). In (Goyal et al., 2018) authors pre-train

a model on existing labeled data for slot tagging
from related domains, and fine-tune on the target
task. Here, we use model pre-training techniques
like (Goyal et al., 2018) as a strong baseline,
and we explore whether classical semi-supervised
ideas that incorporate noisy labels into training can
further boost accuracy for low resource settings.

3 Methodology

We describe our methods in the context of a se-
quence tagging task. Given a small labeled target
dataset D

l

and a large unlabeled source dataset
D

u

, we first select a subset of D
u

that is seman-
tically similar to D

l

, denoted as D

s

u

. The input
utterances we use for training our ST model are
x

i

, i = 1, ...,M + N , where M = |D
l

| is the
number of labeled utterances and N = |Ds

u

| is
the number of selected unlabeled utterances, for
which we need to obtain pseudo labels through
semi-supervised techniques.

Our framework consists of four steps. For step
1, we train a state-of-the-art slot tagger model
on the labeled data, here using a bi-LSTM-CRF
model (Huang et al., 2015). This model will be
used to generate pseudo labeled data. For step
2, from the source dataset we select the data that
is most semantically similar to the target dataset
(see Section 3.1). The selected utterances are fed
to the trained bi-LSTM-CRF model, that gener-
ates the hypothesis labels and associated confi-
dence scores. We also optionally filter-out utter-
ances with low confidence scores. For Step 3,
we explore three different semi-supervised learn-
ing methods to re-train the model with the tar-
get dataset and pseudo-labeled data, which will
be elaborated in Section 3.2. Finally, we fine-tune
our model over the target dataset with a very small
learning rate. This was suggested in (Ding et al.,
2018), and we empirically found it useful for fur-
ther boosting performance.
3.1 Data selection

The source data comes from ASR output text from
hundreds of source NLU functionality domains
developed by external developers of our commer-
cial agent. We also have noisy labels of the source
domains obtained from tags generated by the ex-
ternal develpers about their application (the la-
bel space is different from target functionality do-
mains). The aim of data selection is to select ut-
terances from the source domains that tend to be
most semantically similar to the target domains.

For example, assume that a target low resource
functionality is about requesting cooking recipes.
We would like to select data from semantically re-
lated domains, such as requesting for food calo-
ries, food information, making meal plans, as op-
posed to unrelated domains such as airplane book-
ing or playing music.

To extract the semantic representation of an
utterance, we perform weighted average of pre-
trained word embeddings using Term Frequency
Inverse Document Frequency (TF-IDF) weights.
The IDF weight is computed in a standard manner,
as log((1+U)/(1+n

w

)) where U is the total num-
ber of utterances in the corpus, n

w

is the number
of utterances that word w occurs. Similarly, the TF
weight is computed as o

w

/n

token

where o

w

is the
occurrence of word w, and n

token

is the total num-
ber of tokens in the corpus. We use pre-trained
FastText embeddings (Bojanowski et al., 2016).

Our data selection technique follows the idea of
similarity. Assuming that each target functionality
utterance is a point in a semantic embedding space
defined by the representation we described above,
we select the source utterances, originating from
source functionality domains, that are closest to
the target utterance in the embedding space. For
example, given a target utterance like ‘find a recipe
for apple pie’, we would look for source utterances
that are nearest neighbors in the embedding space.
Detailed description could be found in Appendix
A.

Our original ASR data pool contains millions
of utterances from hundreds of domains. Using
the selection technique described above, we end
up selecting utterances in the order of tens of thou-
sands, originating from around 50 domains.

3.2 Semi-supervised learning methods

As for Step 3, we experiment with three different
approaches of training a sequence tagging model
on both labeled data and pseudo labeled data in a
semi-supervised fashion. Pseudo code of the three
algorithms is presented in Appendix C.

Self-training Conventional self-training
(Yarowsky, 1995; McClosky et al., 2006) is one of
the techniques that we explore. In essence, it is an
iterative training process that uses a trained model
to produce pseudo labels for unlabeled data and
incorporate the additional data in the next iteration
of model training. The filtering mechanism and
stopping criterion are the two critical steps in
this conventional process. Here, we follow (Ab-

ney, 2007) and choose the average log-likelihood
scores of predicted slots per utterance as a filtering
criterion. We choose 10% of the unlabeled data
set as the throttling level for the filtering process,
i.e., we discard the bottom 90% of the utterances
with the lowest average log-likelihood scores. As
for the stopping criterion, we run the algorithm
for a fixed number of R=20 rounds at first, and
then examine the dev set performance and select
the model that achieves the highest accuracy on
the dev set. We notice that the performance (F1
score) on the dev data tends to converge after
around 15 iterations. One disadvantage of this
self-training algorithm is that it requires multiple
iterations of full model training and therefore
significantly increases the overall training time.

Semi-supervised learning with loss re-

weighting (LW) Here, we describe a semi-
supervised technique that does not require multi-
ple model training iterations, therefore reducing
model training time compared to self-training. We
train the model only once with the combination
of labeled and pseudo-labeled data, but update
the pseudo-labels after each epoch by assigning
the most probable label. Inspired by (Lee, 2013)
that applied similar ideas for image classification,
we also re-weight the loss of labeled and pseudo
labeled data during training and assign a lesser
weight to the pseudo labeled data. Deterministic
annealing is applied to trade-off the benefits and
the instability of introducing pseudo labeled data
for training a better model: the weight of loss of
pseudo labeled data progressively increases as the
number of epochs increases.

Moreover, we divide the traning process into
two stages: First, the whole bi-LSTM-CRF model
is trained on labeled data for T1 epochs. After-
wards, we freeze the CRF layer, and only re-train
the bi-LSTM layers on both labeled and pseudo
labeled data following the loss function in Eq. (1):

L1 = �
2

|B|
X

i2(B\Dl)

logz

i

[y
i

]� ↵

t

2

|B| ·

X

i2(B\Ds
u)

logz

i

[y0
i

]
(1)

In this loss, the first term is the standard cross-
entropy on the labeled data, where y

i

is the anno-
tated label and z

i

is the predicted probability vec-
tor. z

i

[y
i

] is the y

i

-th element in z

i

, correspond-
ing to the annotated label. The second term is the
cross-entropy on the pseudo-labeled data where y0

i

is the pseudo label. |B| is the batch size, e.g., we
split each training batch equally between labeled
and pseudo labeled utterances. ↵

t

is the weight of
the loss of pseudo labeled data, computed empir-
ically as in (Lee, 2013). The strategy of includ-
ing the pseudo labeled data only for the bi-LSTM
layers and not in the CRF training empirically in-
creases training stability. This could be because
the CRF model is stronger at learning sequential
information, thus easier to be misled by incorrect
pseudo labels.

Self-ensembling based method (SE) In (Laine
and Aila, 2016), authors introduce a self-
ensembling algorithm for semi-supervised image
classification where the model is encouraged to
produce consistent network outputs across training
epochs with perturbed input data. Their technique
is motivated by the fact that typically an ensemble
of multiple models performs better than a single
model in the ensemble, and also by the idea that
dropout regularization can be seen as a form of en-
sembling where the complete network can be seen
as an implicit ensemble of sub-networks trained
with dropout. In (Laine and Aila, 2016), image
data augmentation (e.g. image flipping, scaling
and shifting), along with dropout, is applied to the
input x

i

to get a perturbed input ex
i

, which pro-
duces the two model predictions z

i

and ez
i

.
Here, we apply similar self-ensembling ideas

for our slot tagging task. Specifically, we use
dropout regularization of the input utterances as
our form of data perturbation, leaving more ad-
vanced forms of text data augmentation as future
work. In the loss function, we add an additional
loss term as the L2 loss of the difference between
z

i

and ez
i

, which is named consistency loss fol-
lowing (Ding et al., 2018). This loss penalizes
different predictions for the same training input
x

i

by taking the mean square difference between
the prediction vectors z

i

and z̃

i

, which are evalu-
ated by the model twice with dropout. Thus the
combined loss function is below, where the first
two terms are as in Eq. (1), while the last term
is enforcing consistency (� is a constant that up-
weights the consistency loss).

L2 = �
2

|B|
X

i2(B\Dl)

logz

i

[y
i

]� ↵

t

2

|B| ·

X

i2(B\Ds
u)

logz

i

[y0
i

] + �

2

|B|
X

i2(B\Ds
u)

kz
i

� ez
i

k2

(2)

3.3 Baseline pre-training method

We pre-train our baseline bi-LSTM-CRF slot tag-
ger on a set of around 4 million labeled utterances
originating from around 20 labeled NLU domains,
and then fine tune our model on the set of target la-
beled utterances D

l

. Again, we are inspired from
computer vision literature, where typical neural
baselines are pre-trained models on large image
datasets (Donahue et al., 2014; Sharif Razavian
et al., 2014). Here, we explore whether our pro-
posed semi-supervised framework that incorpo-
rates noisily labeled data selected from ASR out-
put across multiple functionality domains, can
further improve the accuracy of this strong pre-
trained baseline model for a low resource ST task.

4 Experimental Results

We evaluate the semi-supervised learning exper-
iments on data sets from two NLU domains and
compare with the baseline that does not use any
semi-supervised learning techniques, but starts
from a pre-trained model. These two domains are
used as examples for showing the efficacy of our
techniques in practice. Domain 1 relates to cook-
ing and recipes, and contains 46 slots. Domain 2
is about asking information on businesses around
the user’s location, and contains 41 slots. The ex-
amples of utterances are shown in Table 2 of Ap-
pendix B. Each dataset contains core data (⇠ 300
or 500 utterances) and bootstrap data (⇠ 43k utter-
ances). Core data refers to example utterances de-
signed by user experience engineers that describe
the main functionality that each domain supports.
Bootstrap data refers to domain data collection and
generation of synthetic utterances plus user data
collected from user interactions with our agent. In
addition to these labeled datasets D

l

, we created
unlabeled data pool Ds

u

for each domain using the
data selection process mentioned in 3.1. The size
of the unlabeled data pool is about 30k.

4.1 Results and Analysis

The experiment results for the two data sets are
summarized in Fig. 1, where we present F1
scores for slot labels. Bar plots represent the
mean value and confidence interval (CI) of F1
scores for three algorithms: the baseline algo-
rithm with a pre-trained model, described in Sec-
tion 3.3, and the LW algorithm and SE algorithms
with bootstrap data D

l

plus unlabeled data D

s

u

,
described in Section 3.2. Star shape markers are

F1 scores achieved from the conventional self-
training method (Section 3.2). Following the con-
ventional self-training process, we iteratively train
the model and select the model with the best dev
set performance, hence we do not perform con-
fidence interval analysis for this method. Note
that since the self-training model is selected as the
best performing among multiple self-training iter-
ations, it has a comparative advantage to the LW
and SE algorithms that are trained only for one
iteration. Meanwhile, self-training is also signif-
icantly slower in total model training time com-
pared to the LW and SE algorithms.

Figure 1: Slot tagging model accuracy (F1 score)
between the three semi-supervised techniques and a
strong pre-trained baseline model for the two examined
domains.

Table 1 shows the detailed F1 scores for each
method across the two domains and the differ-
ent data settings. We ran t-tests for all experi-
ments to check if the gain of F1 scores for LW
and SE algorithms are statistically significant. Ex-
cept the experiments using Domain 1 data with
10% bootstrapping data, the gain of F1 scores in
rest experiments are all significant. As to com-
pare between LW and SE methods, the t-test re-
sults confirm that it is difficult to conclude which
method is more superior. Furthermore, we ran ex-
periements using the LW and SE methods without
the optional filtering step, as we empirically found
that filtering does not bring much additional gain
for these methods. Similar to findings in related

Table 1: Experimental Results for Domain 1 and 2 for the Baseline and the three examined semi-supervised
methods w/ filtering data. F1 scores and rel % gains compared to the Baseline across data settings are denoted as:
Core, +10%, corresponding to Core+10% boostrap data. The performance gain in bold are statistically significant.

Domain 1 Domain 2
Base LW SE Self-train. Base LW SE Self-train.
F1 F1 gain F1 gain F1 gain F1 F1 gain F1 gain F1 gain

Core 59.1 60.5 2.4 61.2 3.6 60.8 2.9 49.2 50.5 2.7 52.2 6.1 50.9 3.5

+10% 71.6 71.7 0.01 71.3 -0.4 72.2 0.8 71.3 71.9 0.8 71.9 0.8 71.5 0.3

+50% 75.6 75.8 0.3 75.7 0.1 76.2 0.8 76.1 77.2 1.4 77.0 1.2 76.9 1.1

+100% 76.5 76.8 0.4 76.6 0.1 76.7 0.3 77.3 78.3 1.3 78.3 1.3 78.1 1.0

work (Ruder and Plank, 2018), for conventional
self-training, filtering data is essential for perfor-
mance improvement. However, for LW and SE
algorithms the filtering step is not necessary. As a
matter of fact, we observe the strongest improve-
ment of 7.7% for the experiment using the LW
method on domain 2 with only core data without
this optional step. The advantage of performing
the filtering step is that it provides more consistant
results in the performance gain.

Overall, all three semi-supervised learning
methods improve performance over the pretrained
baseline model for almost all data settings. When
only core data is used for training, the performance
improvement from all semi-supervised learning
algorithms is the largest. This indicates that even
a strong pretrained baseline can benefit from addi-
tional pseudo labeled data, especially in very low
resource settings with few hundreds of in-domain
training utterances. From Fig. 1(b) we observe
the strongest improvement for the experiment us-
ing the SE method on domain 2 with core data
only. This corresponds to a gain of 6.1% relative
in terms of F1 score, as seen in Table 1.

As more labeled data is added for training, the
F1 scores from all methods including the baseline
method increase as expected. The performance
improvement from semi-supervised algorithms is
not as pronounced as in the core data setting be-
cause the extra labeled data dilutes the effect from
the pseudo labeled data during the training pro-
cess. The size of just 10% labeled data is on
the same order as the filtered pseudo labeled data,
which is also about 3k. Among the three semi-
supervised learning methods, in most cases, the F1
scores of algorithms LW and SE are higher than
conventional self-training, with the added advan-
tage of 10-20x faster total training time (because

LW and SE are not trained iteratively). The do-
main specific characteristics of the labeled data
affect the performance improvement of the semi-
supervised methods. For example, we notice that
domain 2 clearly benefits from semi-supervised
learning compared to the baseline model, even for
data settings where more bootstrap data is added
for training, while for domain 1 the benefit is
smaller. This could be a result of the quality of the
initial core annotated data, where noisier data may
harm the quality of assigned pseudo labels (e.g.,
we noticed larger annotation noise for domain 1),
and also of how similar are the source domains in
the available unlabeled data pool to each of the tar-
get domains. We leave further investigation as fu-
ture work.

5 Conclusions

We described a semi-supervised learning frame-
work for leveraging large unlabeled datasets in or-
der to improve slot tagging accuracy (ST) in low
resource settings. Our framework combines ideas
from data selection along with techniques like self
ensembling that were previously introduced in the
context of image classification tasks. Our method
is applied to improve ST accuracy for a commer-
cial agent by first selecting utterances that are se-
mantically similar to the target domain from a
large data pool of diverse functionality domains,
and then by assigning pseudo labels to the selected
data using semi-supervised learning. We evaluate
a variety of semi-supervised methods and compare
them in terms of accuracy and model training ef-
ficiency. Overall, our methods improve ST per-
formance up to 7.7% relative for low resource set-
tings on top of a strong pre-trained baseline model.

References

Steven Abney. 2007. Semisupervised learning for com-
putational linguistics. Chapman and Hall/CRC.

Vincent Van Asch and Walter Daelemans. 2016. Pre-
dicting the effectiveness of self-training: Appli-
cation to sentiment classification. arXiv preprint
arXiv:1601.03288.

Ankur Bapna, Gokhan Tur, Dilek Hakkani-Tur, and
Larry Heck. 2017. Towards zero-shot frame se-
mantic parsing for domain scaling. arXiv preprint
arXiv:1707.02363.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov.
2016. Enriching word vectors with subword infor-
mation. arXiv preprint arXiv:1607.04606.

DialogFlow. https://dialogflow.com.

Yifan Ding, Liqiang Wang, Deliang Fan, and Bo-
qing Gong. 2018. A semi-supervised two-stage ap-
proach to learning from noisy labels. arXiv preprint
arXiv:1802.02679.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoff-
man, Ning Zhang, Eric Tzeng, and Trevor Darrell.
2014. Decaf: A deep convolutional activation fea-
ture for generic visual recognition. In International
conference on machine learning, pages 647–655.

A. Goyal, A. Metallinou, and S. Matsoukas. 2018.
Fast and scalable expansion of natural language un-
derstanding functionality for intelligent agents. In
Proc. of NAACL.

J. Howard and S. Ruder. 2018. Universal language
model fine-tuning for text classification. In Proc. of
ACL.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991.

Anjishnu Kumar, Arpit Gupta, Julian Chan, Sam
Tucker, Bjorn Hoffmeister, Markus Dreyer,
Stanislav Peshterliev, Ankur Gandhe, Denis Fil-
iminov, Ariya Rastrow, et al. 2017. Just ask:
building an architecture for extensible self-service
spoken language understanding. arXiv preprint
arXiv:1711.00549.

Samuli Laine and Timo Aila. 2016. Temporal ensem-
bling for semi-supervised learning. arXiv preprint
arXiv:1610.02242.

Dong-Hyun Lee. 2013. Pseudo-label: The simple and
efficient semi-supervised learning method for deep
neural networks. In Workshop on Challenges in
Representation Learning, ICML.

B. Liu and I. Lane. 2016. Attention-based recurrent
neural network models for joint intent detection and
slot filling. In In Proc of Interspeech 2016.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
Proc. NAACL-HLT.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner,
C. Clark, K. Lee, and L. Zettlemoyer. 2018. Deep
contextualized word representations. In Proc. of
NAACL.

Sebastian Ruder and Barbara Plank. 2018. Strong
baselines for neural semi-supervised learning under
domain shift. arXiv preprint arXiv:1804.09530.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sul-
livan, and Stefan Carlsson. 2014. Cnn features off-
the-shelf: an astounding baseline for recognition. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition workshops, pages 806–
813.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In Proc
of ACL.

Zhi-Hua Zhou and Ming Li. 2005. Tri-training: Ex-
ploiting unlabeled data using three classifiers. EEE
Transactions on Data Engineering, 17(1):1529–
1541.

Xiaojin Zhu. 2005. Semi-supervised learning literature
survey. Technical Report 1530, Computer Sciences,
University of Wisconsin-Madison.

A Appendices

Details of data selection procedure is as follows.

• For each target utterance x

t

find the top-K
nearest neighbor source utterances x

s

from
the unlabeled set D

u

. For each source utter-
ance x

s

, we also know the noisy domain label
d

s

.

• Collect all selected utterances x

s

to create a
preliminary selected set Dprelim

u

• Select a subset of the utterances in D

prelim

u

that correspond to the top-N most commonly
occurring domains d

s

in D

prelim

u

. Those ut-
terances make up our final set of Ds

u

, contain-
ing data from N source domains that are are
semantically related to the target domain.

B Appendices

Table 2: Examples of predictions from the baseline and the SE algorithm with only core data available as training
data in Domain 1 and 2. Entity labels are next to the ’|’ symbol, while ”Other” labels are not shown. Green labels
are correct, while red are incorrect counterparts.

Domain 1 Domain 2

Baseline search for oatmeal|DishName is toys|PlaceName r.|PlaceName
algorithm bread|DishName recipe|InstructionType us|PlaceName opened right

from king|DishName arthur’s|DishName now|Time

Semi-supervised search for oatmeal|FoodItem is toys|PlaceName r.|PlaceName
learning bread|FoodItem recipe|InstructionType us|PlaceName opened right

algorithm from king|FoodIngredient arthur’s|FoodIngredient now|Date

C Appendices

Algorithm 1 Conventional Self-training Algorithm
1: Required: x

i

= training data
2: Required: D

l

= set of training input indices with ground truth labels
3: Required: y

i

= labels for labeled inputs
4: Required: g

✓

+(x) = two bi-LSTM layers + CRF layer of a pre-trained model with parameters ✓+

5: Required: f

✓

(x) = two bi-LSTM layers of the model with parameters ✓
6: Required: T = number of epochs for each iteration
7:
8: for r in [1, R] do

9: for t in [1, T] do

10: for each minibatch B do

11: z

i2B\Dl g

t

✓

+(xi2B\Dl) . re-train the whole network
12: loss � 1

|B\Dl|
P

i2(B\Dl)
logz

i

[y
i

] . supervised loss component
13: � 1

|B\Ds
u|
P

i2(B\Ds
u)
logz

i

[y0
i

] . supervised loss of pseudo labeled data
14: update ✓

+ using optimization method e.g. Adam
15: end for

16: end for

17: D

s

u

(r) D

s

u

(r � 1) . filter top ranked confident data
18: y

0
i2B\Ds

u
= softmax(z

i2B\Ds
u
) . update the reference labels by the predictions at r

19: end for

20: return g

1
✓

+ , g
2
✓

+ , · · · , gr
✓

+ . return r models

Algorithm 2 LW algorithm
1: Required: x

i

= training data
2: Required: D

l

= set of training input indices with ground truth labels
3: Required: y

i

= labels for labeled inputs
4: Required: g

✓

+(x) = two bi-LSTM layers + CRF layer of a pre-trained model with parameters ✓+

5: Required: f

✓

(x) = two bi-LSTM layers of the model with parameters ✓
6: Required: T1, T2 = number of epochs for stage 1, 2
7:
8: Stage 1:

9: for t in [1, T1] do

10: for each minibatch B do

11: z

i2B\Dl g

t

✓

+(xi2B\Dl) . re-train the whole network
12: loss � 1

|B|
P

i2(B\Dl)
logz

i

[y
i

] . only re-train on labeled training data
13: update ✓

+ using optimization method e.g. Adam
14: end for

15: end for

16: return g

T1
✓

+

17:
18: Stage 2:

19: for t in [T1+1, T2] do

20: for each minibatch B do

21: z

i2B\Ds
u
 f

t�1
✓

(x
i2B\Ds

u
) . only re-train bi-LSTM layers

22: y

0
i2B\Ds

u
= softmax(z

i2B\Ds
u
) . update the reference labels as the predictions at t� 1

23: loss � 2
|B|

P
i2(B\Dl)

logz

i

[y
i

] . supervised loss of labeled data
24: �↵

t

2
|B|

P
i2(B\Ds

u)
logz

i

[y0
i

]
25: update ✓ using optimization method e.g. Adam
26: end for

27: end for

28: return f

T2
✓

Algorithm 3 SE algorithm
1: Required: x

i

= training data
2: Required: D

l

= set of training input indices with ground truth labels
3: Required: y

i

= labels for labeled inputs
4: Required: g

✓

+(x) = two bi-LSTM layers + CRF layer of a pre-trained model with parameters ✓+

5: Required: f

✓

(x) = two bi-LSTM layers of the model with parameters ✓
6: Required: T1, T2 = number of epochs for stage 1, 2
7:
8: Stage 1: Same as LW algorithm

9:
10: Stage 2:

11: for t in [T1+1, T2] do

12: for each minibatch B do

13: z

i2B\Ds
u
 f

t�1
✓

(x
i2B\Ds

u
) . evaluate network outputs for the input

14: ez
i2B\Ds

u
 f

t�1
✓

(x
i2B\Ds

u
) . evaluate network outputs for the same input

15: y

0
i2B\Ds

u
= softmax(z

i2B\Ds
u
) . update the reference labels as the predictions at t� 1

16: loss � 2
|B|

P
i2(B\Dl)

logz

i

[y
i

] . supervised loss of labeled data
17: �↵(t) 2

|B|
P

i2(B\Ds
u)
logz

i

[y0
i

] . supervised loss of pseudo labeled data
18: +�

2
|B|

P
i2(B\Ds

u)
kz

i

� ez
i

k2 . unsupervised loss component

19: update ✓ using optimization method e.g. Adam
20: end for

21: end for

22: return f

T2
✓

