arXiv:1605.06968v1 [cs.NA] 23 May 2016

A Riemannian gossip approach to
decentralized matrix completion

Bamdev Mishra Hiroyuki Kasai
Amazon Development Centre India,  The University of Electro-Communications
Bangalore, India Tokyo, Japan
bandevm@mazon. com kasai @s. uec.ac.jp
Atul Saroop

Amazon Development Centre India,
Bangalore, India
asar oop@nazon. com

Abstract

In this paper, we propose novel gossip algorithms for the-lamk decentral-
ized matrix completion problem. The proposed approach itherRiemannian
Grassmann manifold that allowscal matrix completion by different agents while
achieving asymptotic consensus on gf@ballow-rank factors. The resulting ap-
proach is scalable and parallelizable. Our numerical exyggrts show the good
performance of the proposed algorithms on various bendtsnar

1 Introduction

The problem of low-rank matrix completion amounts to cortiptga matrix from a small number
of entries by assuming a low-rank model for the matrix. Thebpgm has many applications in
control systems and system identificatioh [1], collabeesfiltering [2], and information theory [3],
to name a just few. Consequently, it has been a topic of gnéateist and there exist many large-
scale implementations for bobiatch[4l,[5,[6, 7] 8| 9, 10] andnlinescenarios that focus on parallel
and stochastic implementations [11] 12],[13, 14].

In this paper, we are interested irdacentralizedsetting, where we divide the matrix completion
problem into smaller subproblems that are solved by manytadecally while simultaneously
enabling them to arrive at eonsensushat solves the full problem [15]. The recent paper [15]
proposes a particular decentralized framework for matomgletion by exploiting the algorithm
proposed in[[B]. It, however, requires an inexact dynamigsemsus step at every iteration. We
relax this by proposing a novel formulation that combinegetber a weighted sum of completion
and consensus terms. Additionally, in order to minimize ¢bexmunication overhead between
the agents, we constrain each agent to communicateamiyrone other agent as in thgossip
framework[16]. One motivation is that this addresses psn@ncerns of sharing sensitive datal[15].
Another motivation is that the gossip framework is robustdenarios where certain agents may be
inactive at certain time slots, e.g., consider each agebeta computing machine. We propose
a preconditioned variant that is particularly well suited ill-conditioned instances. Additionally,
we also propose a parallel variant that allows to exploiajdarcomputational architectures. All
the variants come with asymptotic convergence guaranfBeshe best of our knowledge, this is
the first work that exploits the gossip architecture for sajvthe decentralized matrix completion
problem.


http://arxiv.org/abs/1605.06968v1

The organization of the paper is as follows. In Sediibn 2, iseubs the decentralized problem setup
and propose a novel problem formulation. In Sedfibn 3, weudis the proposed stochastic gradient
gossip algorithm for the matrix completion problem. A preditioned variant of the Riemannian
gossip algorithm is motivated in Section13.3. Additionallye discuss a way to parallelize the
proposed algorithms in Sectibn B.4. Numerical comparigo®ectiod 4 show that the proposed al-
gorithms compete effectively with state-of-the-art oni@as benchmarks. The Matlab codes for the
proposed algorithms are availablehatt ps: / / bandevm shra. com codes/ gossi pMJ .

2 Decentralized matrix completion

The matrix completion problem is formulated as

1
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whereX* € R™*™ is a matrix whose entries are known for indices if they belemghe sub-
set(i,j) € Q and() is a subset of the complete set of indidgs,j) : ¢ € {1,...,m}andj €
{1,...,n}}. The operatoPqn(X;;) = X;; if (i,7) € Q andPq(X,;;) = 0 otherwise is called the
orthogonal sampling operator and is a mathematically caiewt way to represent the subset of
known entries. The rank constraint parameter usually set to a low value, i.e< (m, n) thatim-
plies that we seek low-rank completion. A way to handle timki@onstraint in[(IL) is by a fixed-rank
matrix parameterization. In particular, we uXe= UW7, whereU € St(r,m) andW € R"*",
whereSt(r, m) is the set ofm x r orthonormalmatrices, i.e., the columns are orthonormal. The
interpretation is thall captures the dominant column spac&o&ndW captures theveights[17].
Consequently, the optimization proble (1) reads
: : T *\ 1|2

pein L min [Po(UW?™) — Pa(X*)|%. )
Theinner least-squares optimization problem[ifh (2) is solved in@tbform by exploiting the least-
squares structure of the cost function to obtain the opétion problem

. 1 T *\112

vemin g [Pa(UWy™) — Pa(X)[lF @)
in U, whereWy is the solution to the inner optimization problaminy cgnx- |Po(UW?) —
Pa(X*)||%. (The cost function in[{3) may be discontinuous at poldtsvhereWy; is non-unique
[18]. This is handled effectively by adding a regularizatterm||X||%. to (1).)

The problem[(B) requires handling the entire incompleterima* at all steps of optimization.
This is memory intensive and computationally heavy, eslgcin large-scale instances. To re-
lax this constraint, we distribute the task of solving theldem [3) amongV agents, which
perform certain computations independently. To this end, partition the incomplete matrix
X* = [X7,X3,...,X%] along the columns such that the sizeXf is m x n; with > n, = n for
i={1,2,..., N}. Each agent has knowledge of the incomplete matXx and itslocal set of in-
dices(2; of known entries. We also partition the weight matk asw?’ = [WT W1 ... W1]
such that the matri¥V; has sizen; x r. A straightforward reformulation of{3) is

1
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v problem handled by agent ¢
whereW y is the least-squares solutioniignyy, cgn; <+ | Pa, (UW] ) — Pq, (X7) /%, which can
be computed by agenindependently of other agents.

Although the computational workload gets distributed agitive agents in the problem formulation
(4), all agents require the knowledge©f(to compute matrice3V;y). To circumvent this issue,
instead of one shared matrX for all agents, each agenistores a local cop¥J;, which it then
updates based on information from iteighbors For minimizing the communication overhead
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between agents, we additionally put the constraint thatytime slot only two agents communicate,
i.e, each agent has exactly only one neighbor. This is thes ledighe gossip framework [16].
In standard gossip framework, at a time slot, an agent isamhdassigned one neighbaor [16].
However, to motivate the various ideas in this paper and ép kke exposition simple, we fix the
agents network topology, i.e., each agent is preassigneijaeineighbor. (In Sectidn 3.5, we show
how to deal with random assignments of neighbors.) To this #1@ agents are numbered according
to their proximity, e.g., for < N — 1, agentsi and: + 1 are neighbors. Equivalently, agerits
and2 are neighbors and can communicate. Similarly, ageaisd3 communicate, and so on. This
communication between the agents allows to reachresensusn U;. Specifically, it suffices that
the column spacesf all U; converge. (The precise motivation and formulation are ictiSe[3.)
Our proposed decentralized matrix completion problem fdation is

1
i - (U,WL, ) = Po, (X2
n D Z [Pa, ( u,) = Pa, (X7 %
’ completion task handled by agent (5)
+ g (d1(U1,Uz2)? + dy(Us, Us)* + ...+ dy_1(Un_1,Un)?),

consensus

whered; is a certain distance measure (defined in Segfion 3) betilgemdU,; fori < N — 1,
minimizing which forcesU; andU;,; to an “average” point (specifically, average of the column
spaces)yp > 0 is a parameter that trades off matrix completion with cosesnHeréw ,y, is the
solution to the optimization probleminyy cpnx- || Po, (U;WT) — Po, (X7)|/%.

Uy,...,

In standard gossip framework, the aim is to make the agemtgecge to a common point, e.g,
minimizing only the consensus term [d (5). In our case, wetamthlly need the agents to perform
certain tasks, e.g., minimizing the completion terniin ¢@ich motivates theveightedformulation
(). For alarge value of, the consensus term inl (5) dominates, minimizing whichnalthe agents
to arrive at consensus. Fpr= 0, the optimization probleni{5) solve€ independent completion
problems and there is no consensus. For a sufficiently lalyewfp, the problem[(b) achieves the
goal of matrix completion along with consensus.

3 TheRiemannian gossip algorithm

It should be noted that the optimization probldmh (3), andlaily (@), only depends on theolumn
spaceof U rather tharlU itself [9,[11]. Equivalently, the cost function inl(3) remaiconstant under
the transformatiorlJ — UO for all orthogonal matrice® of sizer x r. Mathematically, the
column space oU is captured by the set, called thquivalence clas®f matrices

[U] :={UO: Oisar x r orthogonal matrix}. (6)

The set of the equivalence classes is called@hessmanmanifold, denoted bysr(r, m), which
is the set ofr-dimensional subspacesRi" [19]. The Grassmann manifoldr(r, m) is identified
with the quotient manifoldt(r, m)/O(r), whereO(r) is the orthogonal group of x r matrices
[19].

Subsequently, the problef (3), and similatly (4), is on th@sSmann manifol€r(r, m) and not on
St(r, m). However, agzr(r, m) is an abstract quotient space, numerical optimizationralgos are
implemented with matrice&l on St(r, m), but conceptually, optimization is d@r(r, m). It should

be stated that the Grassmann manifold has the structurBighaanniamrmanifold and optimization
on the Grassmann manifold is a well studied topic in litematuNotions such as the Riemannian
gradient (first order derivatives of a cost function), gesicdé¢shortest distance between elements),
and logarithm mapping (capturing “difference” betweemsdats) have closed-form expressions
[19].

If z is an element of a Riemannian compact maniféit] then the decentralized formulatidd (5)
boils down to the form

min Z filxs)

Z1,...,LNEM
0

+ 3 (di(z1,22)* + do(w2,23)* + ... + dn_1(xN_1,2N)?),

()

consensus



Table 1: Proposed online gossip algorithm fdr (7)

1. Ateach time slot, pick an ageni < N — 1 randomly with uniform probability.
2. Compute the Riemannian gradieptad,, fi, grad,, . fi+1, grad, d;, andgradzmdi with the
matrix representations

Grada, fi = (,PQz(ULWzTUl) = Pa, (X)) Wiy,
gradwifi = Gradg, fi — Ui(U;‘FGradzifi)
grad, d; = —Log, (wit1)

grad,  d; = —Logchl (z4),

i+1

Tit1
whereUs; is the matrix representation of;,. Log, (z+1) is thelogarithm mapping, which is

defined as
Log,, (wit+1) = Parctan(S)Q7,

where PSQ” is the rankr singular value decomposition ofU;;; — U; (U7 Uit1))
(UTU;41)" " Thearctan(-) operation is only on the diagonal entries. It should be néted
the Riemannian gradient of the Riemannian distance is thative logarithm mapping [21].

3. Given a stepsize:, updater; andx;+1 as

ziy = Exp, (—vi(ougrad,, fi + pgrad,, d:))

vit1y = Bxp,  (—yi(aivigrad, fir1 + pgrad, , di)),

where U; is the matrix representation of; anda; = 1if ¢ = {1, N}, elsea; = 0.5.

Exp, (&;) = UiVeos(X)VT 4+ Wsin(X) V" is the exponentiaimapping andW= V™ is

the ranks singular value decomposition 6f,. Thecos(-) andsin(-) operations are only on th
diagonal entries.

1%

wherez; = [U;] with matrix representatiot; € St(r,m), M = Gr(r,m) = St(r,m)/O(r),

fi : M — Ris a continuous function, angl : M x M — R is the Riemannian geodesic distance
betweenc; andz; . Here[U;] is the equivalence class defined[ih (6). The Riemannianmtists
captures the distance between the subspdégsand[U,;]. Minimizing only the consensus term
in () is equivalent to computing th€archer mearof N subspaces [20, 21].

We exploit the stochastic gradient descent setting framepmposed by Bonnabel [20] for solving
(@), which is an optimization problem on the Grassmann nadohif In particular, we exploit the
stochastic gradient algorithm in the gossip framework. degkthe analysis simple, we predefine the
topology on the agents network. Following [20, Section Avg make the following assumptions.

Al Agentsi andi + 1 are neighbors forall < N — 1.

A2 At each time slot, say, we pick an agent < N — 1 randomly with uniform probability.
This means that we also pick agént 1 (the neighbor of ageni). Subsequently, agents
andi + 1 updater; andx;1, respectively, by taking gradient descent stepith stepsize
v on M. The stepsize sequence satisfies the standard conditiens, iv? < oo and
> = +oo [20, Section 3].

Each time we pick an agent< N — 1, we equivalently also pick its neighbb#- 1. Subsequently,
we need to update both of them by taking a gradient descenbsiged ory;(z;) + fir1(zit1) +
pd;(z;,;11)% /2. Repeatedly updating the agents in this fashion is a sttichascess.

It should be noted that because of the particular topologly sempling that we assume (&l
andlA2), on an average, to z_; are updatedwice the number of times; andxzy are up-
dated. For example, ifV = 3, then[ATl and[AZ lead to solving (in expectation) the problem
minzhxzymaeM fl(iZ?l) + 2f2(562) + fg(xg) + p(dl(xl,x2)2 + dQ(IQ,I3)2)/2. To resolve this
issue, we multiply the scalar; to f; (and its Riemannian gradient) while updating. Specif-
ically, a; = 1if i = {1,N}, elsea; = 0.5. If grad,_ f; is the Riemannian gradient of;
atx; € M, then the stochastic gradient descent algorithm updatedong the search direction
—(augrad,, f; + pgrad,, d;) with the exponential mappingxp,,, : T,, M — M, whereT, M is
the tangent space d¥1 atz;. The overall algorithm with concrete matrix expressioniaisable].



Table 2: Proposed preconditioned gossip algorithm{for (7)

1. At each time slot, pick an ageni < N — 1 randomly with uniform probability and compute
the Riemannian gradientgad,, f;, grad,._ , fi+1, grad, d;, andgrad d; with the matrix
representations shown in Table 1.

2. Given a stepsize:, updater; andz; 1 as

i+1 Tit+1

ziy = Exp, (—ve(cugrad,, fi + pgrad,, di)(Wiy, Wiu, + pI) ")
vit1y = Bxp,  (—yi(aipagrad,, fit1 + pgrad di)(Wiiiu,,, Witiu,, +p0)7 )

i4+1 Tit+1
where W;y, is the least-squares solution to the optimization problem

minyy,. cgn;xr [|[Po, (UiWT) — Po, (X})[|%. Exp anda; are defined in Tablgl 1.

The stochastic gradient descent algorithm in TBble 1 cgessto a critical point of {7almost surely
[20]. The gradient updates require the computation of tlegrRRinnian gradient of the cost function
in (@) and moving along the geodesics witkponentiamapping, both of which have closed-form
expressions on the Grassmann manifdidr, m) [19]. Similarly, the matrix completion problem
specific gradient computations are showri in [9].

3.1 Computational complexity

For an update of; with the formulas shown in Tablg 1, the computational comipfedepends on
the computation opartial derivativesof the cost function in[{7), e.gGrad,., f;. Particularly, in
the context of the problerfi](5), the computational cog?(&2;|r? + n;r?> + mr). The Grassmann
manifold related ingredients, e.dxp, costO(mr? + r3).

3.2 Convergence analysis

Asymptotic convergence analysis of the algorithm in Tabfeltbws directly from the analysis in
[20, Theorem 1]. The key idea is that for a compact Riemanmianifold all continuous functions of
the parameter can be bounded. This is the casElfor (7), whahthecompacGrassmann manifold
Gr(r, m). Subsequently, under a decreasing stepsize condition@sg gradient estimates (that is
an unbiased estimator of the batch gradient), the stochgsddient descent algorithm in Table
converges to a critical point ofl(7) almost surely. Conuaefly, while the standard stochastic
gradient descent setup deals with iafinite stream of samples, we deal with a finite number of
samples (i.e., we pick an agent{ N — 1), which we repeat many times.

3.3 Preconditioned variant

The performance of first order algorithm (including stodltagradients) often depends on tben-
dition number(the ratio of maximum eigenvalue to the minimum eigenvabfdhe Hessian of the
cost function (at the minimum). The issue of ill-conditingiarises especially when daXa have
drawn power law distributed singular values. Additionadlyarge value op in () leads to conver-
gence issues for numerical algorithms. To this end, thentegerks [6, 7| 9] exploit the concept of
manifold preconditioningn matrix completion. Specifically, the Riemannian gratkesrescaled
by computationally cheap matrix terms that arise from tle®sd order curvature information of the
cost function. Matrix scaling of the gradients is equivalenmultiplying an approximation of the
inverseHessian to gradients. This operation on a manifold requipesial attention. In particular,
the matrix scalingnustbe a positive definite operator on the tangent space of thédaotafi] 9].

Given the Riemannian gradiet, = grad,, f; + pgrad, d; computed by agent the proposed
manifold preconditioning is

gzi = 5961( WzTUlwlUm + pI )715 (8)
———— ~~~

from completion from consensus

5



Table 3: Proposed parallel variant bt (7)

1. Define roundl as consisting of agents = 1,3, ... and their neighbors. Define rourlas
consisting of agents= 2, 4, ... and their neighbors.

2. Ateach time slot, pick a round; < 2 randomly with uniform probability.

3. Given a stepsize, update the agents (and their corresgpndighbors) in parallel with the up
dates proposed in Tallé 1 (or in Table 2).

whereW u;, is the solution to the optimization problening, cgn: <~ | Pa, (U; W) —Pao, (X5)[|%
andI isr x r identity matrix. The use of preconditionirig (8) coétgn;r? + ).

The termW2%;, Wy, is motivated by the fact that it is computationally cheapdmpute and cap-
tures ablock diagonal approximationf the Hessian of the simplified (but related) cost function
HUiWiTm — X¥||%. The works[[6[7.19] use sugbreconditionerswith superior performance. The
term pI is motivated by the fact that the second order derivativenefsquare of the Riemannian
geodesic distance is an identity matrix. Finally, it shdpédnoted that the matrix scaling is positive
definite, i.e.,WiTUiWiUi + pI = 0 and that the transformationl (8) is on the tangent space vEqui
lently, if &, belongs tdl,,, M, thené,,, (WiTUiWZ-Ui + pI)~! also belongs t@,, M. This is readily
checked by the fact that the tangent spégeM atx; on the Grassmann manifold is characterized
by the SEt{nmi F Ny € Rmxr’ U?niz = O}

The proposed preconditioned variant of the stochasticignadiescent algorithm fofX7) is shown
in Table[2. It should be noted that preconditioning the geatli does not affect the asymptotic
convergence guarantees of the proposed algorithm.

3.4 Paralle variant

AssumptiofATon the network topology of agents allows to propose panagants of the proposed
stochastic gradient descent algorithms in Tables 1and 2hiS@nd, instead of picking one agent
at a time, we pick agents in such a way that it leads to a nunflparallel updates.

We explain the idea foV = 5. Updates of the agents are divided into twainds In roundl,

we pick agentd and3, i.e., all theodd numbered agents. It should be noted that the neighbor of
agentl is agent and the neighbor of ageftis agentd. Consequently, the updates of agentnd

2 are independent from those of agebitand4 and hence, can be carried out in parallel. In round
2, we pick agent® and4, i.e., all theevennumbered agents. The updates of agénasd3 are
independent from those of agedtand5 and therefore, can be carried out in parallel.

The key idea is thatandomnesss on the rounds and not on the agents. For example, we pick a
round; from {1, 2} with uniform probability. Once a round is picked, the update the agents
(that are part of this round) are performed with the samessteand in parallel. The stepsize is
updated when a new round is picked. The stepsize sequernsfeesahe standard conditions, i.e., it

is square-summable and its summation is divergent. Thathadgorithm in shown in Tablel3.

To prove convergence, we define two new functions,

g1(@1,22,..) = fi(@1) + fa(w2) + ..+ D (di (01, 22) + dy(ws, 24)% + )

C)

gg(wg, xs, .. ) = fg(xg) + f3($3) + ...+ 5((12(1‘2,1‘3)2 + d4(x4,x5)2 + .. .),
that consist of terms from the cost function(ih (7). The aildpon in Table[3B is then interpreted as the
standard stochastic gradient descent algorithm applidtetproblem

m?g\l/t g1(z1,22,...) + ga(x2, 23, .. .). (10)

with two “samples” that are chosen randomly at each time §lohsequently, following the standard
arguments, the algorithm in Talile 3 converges asymptbtitala critical point of [10). However,
it should also be noted that the additiong@fand go leads tox, to 21 being updated (on an
averagefwicethe number of times; andxy are updated. This is handled by multiplying to



Table 4: Proposed algorithm for continuously changing eettopology

1. Ateach time slot, pick a pair of agents, sayandk, randomly with uniform probability.
2. Compute the Riemannian gradietadwifi, gradwkfk, gradwidik, andgradmkdi;c as

Gradwi f’i = (,PQz(ULWzTUl) - PQz(X:))Wle
grad, fi; = Grad,, f; — U;(U] Grad,, f;)
grad, dix = —Log, (wk)

grad,, dix = —Logw; (z4),

whereLog is defined in TabIE]1.
3. Given a stepsize:, updater; andzy, as

ziy = Exp,, (—ve(grad,, fi + pgrad,, dix))
Ty = Exp,, (—ve(grad,, fr + pgrad,, dix)),

where the exponential mappitttkp,, . is defined in Tablgll.

fi while updatinge;s, wheren; = 1if i = {1, N}, elsea; = 0.5. Finally, the algorithm in Table
(3) converges to a critical point dfl(7). It should emphagditteat parallelization of the updates is for
free by virtue of construction of functions inl (9).

3.5 Extension to continuously changing networ k topology

The algorithm in Tabl€]1 assumes that the neighbors of thatagee predefined in a particular
way (assumptio@I). However, in many scenarios the network topology changtstime [16].

To simulate the scenario, we first consider a fully conneottork of N agents. The number of
unique edges i&(N — 1)/2. We pick an edgek (the edge that connects agehtdk) randomly
with uniform probability and drop all the other edges. Eail@ntly, only one edge iactiveat any
time slot. Consequently, we update agengndk with a gradient descent update, e.g., based on
Table[1 or Tablél2. The overall algorithm is shown in Tdble dlidwing the arguments in Section
[3.2, itis straightforward to see that the proposed algoritbnverges almost surely to a critical point
of a problem that combines completion along with consensais,

min (N -1) Zfz(xl) + gz it (4, 71)?, (11)

T1,...,tNEM :
i<k

whered;;(z;, x1) is the Riemannian geodesic distance betweemndzxy.

4 Numerical comparisons

Our proposed algorithms in Talile 1 (Online Gossip) and inél@l§Precon Online Gossip) and their
parallel variants, Parallel Gossip and Precon Parallekippare compared on different problem in-
stances. The implementations are based on the Manopt tof@Bpwith certain operations relying
on the mex files supplied with [9]. We also show comparisorth W-LMaFit, the decentralized
algorithm proposed i [15] on smaller instances as the D-Eivleode (supplied by the authors) is
nottuned to large-scale instances. As the mentioned algositirewell suited for different scenar-
ios, we compare them against the numbearpdategperformed by the agents. We fix the number of
agentsV to 6. Online algorithms are run for a maximumifO0 iterations. The parallel variants are
run for400 iterations. Overall, agenisand N perform a maximum o200 updates (rest all perform
400 updates). D-LMaFit is run fot00 iterations, i.e., each agent perfordt®) updates. Algorithms
are initialized randomly. The stepsize sequence is defiseda ~y/t, wheret is the time slot and
~o IS set using cross validation. For simplicity, all figuresyoshow the plots for agentsand2.

All simulations are performed in Matlab on2a7 GHz Intel Core 5 machine with8 GB of RAM.
For each example considered hereparx n random matrix of rank is generated as inl[4]. Two
matricesA € R™*" andB € R"*" are generated according to a Gaussian distribution with zer



Mean square error on training set

Mean square error on test set

mean and unit standard deviation. The matrix produB’ gives a random matrix of rank A
fraction of the entries are randomly removed with uniforrolability and noise (sampled from
the Gaussian distribution with mean zero and standard tievia0—%) is added to each entry to
construct the training s€ andX*. The over-sampling ratio (OS) is the ratio of the number of
known entries to the matrix dimension, i@S = |Q|/(mr + nr — r?). We also create a test set by
randomly picking a small set of entries fraAB”". The matriceX are created by distributing the
number ofn columns ofX* equally among the agents. The training and test sets arpatstoned
similarly.
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Figure 1: Performance of proposed algorithms in differestsrios.

Case 1: effect of p. We consider a problem instance of size 10 @00 000 of rank and OS6.

Two scenarios witlp = 102 andp = 10'° are considered. Figufé 1(a) shows the performance of

Online Gossip. Not surprisingly, for = 10!, we only see consensus (the distance between agents
1 and? tends to zero). Fop = 103, we see both completion and consensus, which validates the
theory.

Case 2: performance of online versus parallel. We consider Case 1 with = 103. Figure[1(b)
shows the performance of Online Gossip and Parallel Gdssth,of which show a similar behavior
on the training and test (not shown here) sets.

Case 3: ill-conditioned instances. We consider a problem instance of size 5 860 000 of rank

5 and impose an exponential decay of singular values withiionchumber500 and OS6. Figure
[I(c) shows the performance of Online Gossip and its pretioneid variant fop = 102. During the
initial updates, the preconditioned variant aggressiwghimizes the completion term df|(5), which
shows the effect of the preconditionér (8). Eventually,sssus among the agents is achieved.
Overall, the preconditioned variant shows a superior perémce on both the training and test sets
as shown in Figurdd 1(c) ahd 1(d).

Case 4: Comparisonswith D-L MaFit [[15]. We consider a problem instance of six® x 12000,
rank5, and OS5. D-LMaFit is run with the default parameters. For Online &pswe sep = 103.
As shown in FiguréJl(e), Online Gossip quickly outperforméaFit. Overall, Online Gossip
takes fewer number of updates to reach a high accuracy.

Case 5: MovieLens 20M dataset [23]. Finally, we show the performance of Online Gossip on
the MovieLens-20M dataset @H000263 ratings by138493 users for26744 movies. (D-LMaFit is
not compared as it does not scale to this dataset.) We pebfoamdom80/20 train/test partitions.
We split both the train and test data amaNg= 4 agents along the number of users such that



each agent has ratings f@6744 movies and34624 (except agentl, which has34621) unique
users. This ensures that the ratings are distributed eaenbng the agents. We run Online Gossip
with p = 107 (through cross validation) and f800 iterations. Figuré&l1(f) shows that asymptotic
consensus is achieved among the four agents. It should bd tiwtt the distance between agents
and3 decreases faster than others as agematsd3 are updated (on an average) twice the number
of times than agents and4 (assumptiofAI). Table[% shows the normalized mean absolute errors
(NMAE) obtained on thdull test set averaged over five runs. NMAE is defined as the meafuibs
error (MAE) divided by variation of the ratings. Since the¢imgs vary from0.5 to 5, NMAE is
MAE/4.5. We obtain the lowest NMAE for rank

Table 5: Performance of Online Gossip on MovieLens 20M adtas

Rank3 Rank5 Rank?7 Rank9
NMAE on testset| 0.1519+3-10"° | 0.1507+£3-10 2| 0.1531+£2-10 ° | 0.1543+1-10 °

5 Conclusion

We have proposed a Riemannian gossip approach to the datasdmmatrix completion problem.
Specifically, the completion task is distributed among a benof agents, which are then required to
achieve consensus. Exploiting the gossip framework, shsadeled as minimizing a weighted sum
of completionand consensuserms on the Grassmann manifold. The rich geometry of thassra
mann manifold allowed to propose a novel stochastic gradiescent algorithm for the problem
with simple updates. Additionally, we have proposed twdargs — preconditioned and parallel —
of the algorithm for dealing with different scenarios. Nutoal experiments show the competitive
performance of the proposed algorithms on different berachm
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