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Abstract

In this paper, we propose novel gossip algorithms for the low-rank decentral-
ized matrix completion problem. The proposed approach is onthe Riemannian
Grassmann manifold that allowslocalmatrix completion by different agents while
achieving asymptotic consensus on theglobal low-rank factors. The resulting ap-
proach is scalable and parallelizable. Our numerical experiments show the good
performance of the proposed algorithms on various benchmarks.

1 Introduction

The problem of low-rank matrix completion amounts to completing a matrix from a small number
of entries by assuming a low-rank model for the matrix. The problem has many applications in
control systems and system identification [1], collaborative filtering [2], and information theory [3],
to name a just few. Consequently, it has been a topic of great interest and there exist many large-
scale implementations for bothbatch[4, 5, 6, 7, 8, 9, 10] andonlinescenarios that focus on parallel
and stochastic implementations [11, 12, 13, 14].

In this paper, we are interested in adecentralizedsetting, where we divide the matrix completion
problem into smaller subproblems that are solved by many agents locally while simultaneously
enabling them to arrive at aconsensusthat solves the full problem [15]. The recent paper [15]
proposes a particular decentralized framework for matrix completion by exploiting the algorithm
proposed in [6]. It, however, requires an inexact dynamic consensus step at every iteration. We
relax this by proposing a novel formulation that combines together a weighted sum of completion
and consensus terms. Additionally, in order to minimize thecommunication overhead between
the agents, we constrain each agent to communicate withonly one other agent as in thegossip
framework [16]. One motivation is that this addresses privacy concerns of sharing sensitive data [15].
Another motivation is that the gossip framework is robust toscenarios where certain agents may be
inactive at certain time slots, e.g., consider each agent tobe a computing machine. We propose
a preconditioned variant that is particularly well suited for ill-conditioned instances. Additionally,
we also propose a parallel variant that allows to exploit parallel computational architectures. All
the variants come with asymptotic convergence guarantees.To the best of our knowledge, this is
the first work that exploits the gossip architecture for solving the decentralized matrix completion
problem.
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The organization of the paper is as follows. In Section 2, we discuss the decentralized problem setup
and propose a novel problem formulation. In Section 3, we discuss the proposed stochastic gradient
gossip algorithm for the matrix completion problem. A preconditioned variant of the Riemannian
gossip algorithm is motivated in Section 3.3. Additionally, we discuss a way to parallelize the
proposed algorithms in Section 3.4. Numerical comparisonsin Section 4 show that the proposed al-
gorithms compete effectively with state-of-the-art on various benchmarks. The Matlab codes for the
proposed algorithms are available athttps://bamdevmishra.com/codes/gossipMC/.

2 Decentralized matrix completion

The matrix completion problem is formulated as

min
X∈Rm×n

1

2
‖PΩ(X) − PΩ(X

⋆)‖2F

subject to rank(X) = r,
(1)

whereX⋆ ∈ R
n×m is a matrix whose entries are known for indices if they belongto the sub-

set (i, j) ∈ Ω andΩ is a subset of the complete set of indices{(i, j) : i ∈ {1, ...,m} andj ∈
{1, ..., n}}. The operatorPΩ(Xij) = Xij if (i, j) ∈ Ω andPΩ(Xij) = 0 otherwise is called the
orthogonal sampling operator and is a mathematically convenient way to represent the subset of
known entries. The rank constraint parameterr is usually set to a low value, i.e.,≪ (m,n) that im-
plies that we seek low-rank completion. A way to handle the rank constraint in (1) is by a fixed-rank
matrix parameterization. In particular, we useX = UW

T , whereU ∈ St(r,m) andW ∈ R
n×r,

whereSt(r,m) is the set ofm × r orthonormalmatrices, i.e., the columns are orthonormal. The
interpretation is thatU captures the dominant column space ofX andW captures theweights[17].
Consequently, the optimization problem (1) reads

min
U∈St(r,m)

min
W∈Rn×r

‖PΩ(UW
T )− PΩ(X

⋆)‖2F . (2)

Theinner least-squares optimization problem in (2) is solved in closed form by exploiting the least-
squares structure of the cost function to obtain the optimization problem

min
U∈St(r,m)

1

2
‖PΩ(UWU

T )− PΩ(X
⋆)‖2F (3)

in U, whereWU is the solution to the inner optimization problemminW∈Rn×r ‖PΩ(UW
T ) −

PΩ(X
⋆)‖2F . (The cost function in (3) may be discontinuous at pointsU whereWU is non-unique

[18]. This is handled effectively by adding a regularization term‖X‖2F to (1).)

The problem (3) requires handling the entire incomplete matrix X
⋆ at all steps of optimization.

This is memory intensive and computationally heavy, especially in large-scale instances. To re-
lax this constraint, we distribute the task of solving the problem (3) amongN agents, which
perform certain computations independently. To this end, we partition the incomplete matrix
X

⋆ = [X⋆
1,X

⋆
2, . . . ,X

⋆
N ] along the columns such that the size ofX

⋆
i is m× ni with

∑
ni = n for

i = {1, 2, . . . , N}. Each agenti has knowledge of the incomplete matrixX⋆
i and itslocal set of in-

dicesΩi of known entries. We also partition the weight matrixW asWT = [WT
1 ,W

T
2 , . . . ,W

T
N ]

such that the matrixWi has sizeni × r. A straightforward reformulation of (3) is
∑

i

min
U∈St(r,m),Wi∈Rni×r

1

2
‖PΩi

(UWi
T )− PΩi

(X⋆
i )‖

2
F

= min
U∈St(r,m)

1

2

∑

i

‖PΩi
(UW

T
iU)− PΩi

(X⋆
i )‖

2
F

︸ ︷︷ ︸

problem handled by agent i

,
(4)

whereWiU is the least-squares solution tominWi∈Rni×r ‖PΩi
(UW

T
i ) − PΩi

(X⋆
i )‖

2
F , which can

be computed by agenti independently of other agents.

Although the computational workload gets distributed among the agents in the problem formulation
(4), all agents require the knowledge ofU (to compute matricesWiU). To circumvent this issue,
instead of one shared matrixU for all agents, each agenti stores a local copyUi, which it then
updates based on information from itsneighbors. For minimizing the communication overhead
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between agents, we additionally put the constraint that at any time slot only two agents communicate,
i.e, each agent has exactly only one neighbor. This is the basis of the gossip framework [16].
In standard gossip framework, at a time slot, an agent is randomly assigned one neighbor [16].
However, to motivate the various ideas in this paper and to keep the exposition simple, we fix the
agents network topology, i.e., each agent is preassigned a unique neighbor. (In Section 3.5, we show
how to deal with random assignments of neighbors.) To this end, the agents are numbered according
to their proximity, e.g., fori 6 N − 1, agentsi and i + 1 are neighbors. Equivalently, agents1
and2 are neighbors and can communicate. Similarly, agents2 and3 communicate, and so on. This
communication between the agents allows to reach aconsensusonUi. Specifically, it suffices that
thecolumn spacesof all Ui converge. (The precise motivation and formulation are in Section 3.)
Our proposed decentralized matrix completion problem formulation is

min
U1,...,UN∈St(r,m)

1

2

∑

i

‖PΩi
(UiW

T
iUi

)− PΩi
(X⋆

i )‖
2
F

︸ ︷︷ ︸

completion task handled by agent i

+
ρ

2
(d1(U1,U2)

2 + d2(U2,U3)
2 + . . .+ dN−1(UN−1,UN )2)

︸ ︷︷ ︸
consensus

,
(5)

wheredi is a certain distance measure (defined in Section 3) betweenUi andUi+1 for i 6 N − 1,
minimizing which forcesUi andUi+1 to an “average” point (specifically, average of the column
spaces).ρ > 0 is a parameter that trades off matrix completion with consensus. HereWiUi

is the
solution to the optimization problemminWi∈Rni×r ‖PΩi

(UiW
T
i )− PΩi

(X⋆
i )‖

2
F .

In standard gossip framework, the aim is to make the agents converge to a common point, e.g,
minimizing only the consensus term in (5). In our case, we additionally need the agents to perform
certain tasks, e.g., minimizing the completion term in (5),which motivates theweightedformulation
(5). For a large value ofρ, the consensus term in (5) dominates, minimizing which allows the agents
to arrive at consensus. Forρ = 0, the optimization problem (5) solvesN independent completion
problems and there is no consensus. For a sufficiently large value ofρ, the problem (5) achieves the
goal of matrix completion along with consensus.

3 The Riemannian gossip algorithm

It should be noted that the optimization problem (3), and similarly (4), only depends on thecolumn
spaceof U rather thanU itself [9, 11]. Equivalently, the cost function in (3) remains constant under
the transformationU 7→ UO for all orthogonal matricesO of size r × r. Mathematically, the
column space ofU is captured by the set, called theequivalence class, of matrices

[U] := {UO : O is a r × r orthogonal matrix}. (6)

The set of the equivalence classes is called theGrassmannmanifold, denoted byGr(r,m), which
is the set ofr-dimensional subspaces inRm [19]. The Grassmann manifoldGr(r,m) is identified
with the quotient manifoldSt(r,m)/O(r), whereO(r) is the orthogonal group ofr × r matrices
[19].

Subsequently, the problem (3), and similarly (4), is on the Grassmann manifoldGr(r,m) and not on
St(r,m). However, asGr(r,m) is an abstract quotient space, numerical optimization algorithms are
implemented with matricesU onSt(r,m), but conceptually, optimization is onGr(r,m). It should
be stated that the Grassmann manifold has the structure of aRiemannianmanifold and optimization
on the Grassmann manifold is a well studied topic in literature. Notions such as the Riemannian
gradient (first order derivatives of a cost function), geodesic (shortest distance between elements),
and logarithm mapping (capturing “difference” between elements) have closed-form expressions
[19].

If x is an element of a Riemannian compact manifoldM, then the decentralized formulation (5)
boils down to the form

min
x1,...,xN∈M

∑

i

fi(xi)

+
ρ

2
(d1(x1, x2)

2 + d2(x2, x3)
2 + . . .+ dN−1(xN−1, xN )2)

︸ ︷︷ ︸
consensus

,
(7)
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Table 1: Proposed online gossip algorithm for (7)

1. At each time slott, pick an agenti 6 N − 1 randomly with uniform probability.
2. Compute the Riemannian gradientsgrad

xi
fi, gradxi+1

fi+1, grad
xi
di, andgrad

xi+1
di with the

matrix representations

Gradxi
fi = (PΩi

(UiW
T

iUi
)− PΩi

(X⋆

i ))WiUi

grad
xi
fi = Gradxi

fi −Ui(U
T

i Gradxi
fi)

grad
xi
di = −Log

xi
(xi+1)

grad
xi+1

di = −Log
xi+1

(xi),

whereUi is the matrix representation ofxi. Log
xi
(xi+1) is the logarithm mapping, which is

defined as
Log

xi
(xi+1) = Parctan(S)QT ,

where PSQT is the rank-r singular value decomposition of(Ui+1 − Ui(U
T

i Ui+1))
(UT

i Ui+1)
−1. Thearctan(·) operation is only on the diagonal entries. It should be notedthat

the Riemannian gradient of the Riemannian distance is the negative logarithm mapping [21].
3. Given a stepsizeγt, updatexi andxi+1 as

xi+ = Exp
xi
(−γt(αigradxi

fi + ρgrad
xi
di))

xi+1+ = Exp
xi+1

(−γt(αi+1gradxi+1
fi+1 + ρgrad

xi+1
di)),

whereUi is the matrix representation ofxi and αi = 1 if i = {1, N}, elseαi = 0.5.
Exp

xi
(ξxi

) = UiVcos(Σ)VT + Wsin(Σ)VT is the exponentialmapping andWΣVT is
the rank-r singular value decomposition ofξxi

. Thecos(·) andsin(·) operations are only on the
diagonal entries.

wherexi = [Ui] with matrix representationUi ∈ St(r,m), M = Gr(r,m) = St(r,m)/O(r),
fi : M → R is a continuous function, anddi : M×M → R is the Riemannian geodesic distance
betweenxi andxi+1. Here[Ui] is the equivalence class defined in (6). The Riemannian distancedi
captures the distance between the subspaces[Ui] and[Ui+1]. Minimizing only the consensus term
in (7) is equivalent to computing theKarcher meanof N subspaces [20, 21].

We exploit the stochastic gradient descent setting framework proposed by Bonnabel [20] for solving
(7), which is an optimization problem on the Grassmann manifold. In particular, we exploit the
stochastic gradient algorithm in the gossip framework. To keep the analysis simple, we predefine the
topology on the agents network. Following [20, Section 4.4], we make the following assumptions.

A1 Agentsi andi+ 1 are neighbors for alli 6 N − 1.

A2 At each time slot, sayt, we pick an agenti 6 N − 1 randomly with uniform probability.
This means that we also pick agenti + 1 (the neighbor of agenti). Subsequently, agentsi
andi + 1 updatexi andxi+1, respectively, by taking agradient descent stepwith stepsize
γt on M. The stepsize sequence satisfies the standard conditions, i.e.,

∑
γ2
t < ∞ and

∑
γt = +∞ [20, Section 3].

Each time we pick an agenti 6 N − 1, we equivalently also pick its neighbori+ 1. Subsequently,
we need to update both of them by taking a gradient descent step based onfi(xi) + fi+1(xi+1) +
ρdi(xi, xi+1)

2/2. Repeatedly updating the agents in this fashion is a stochastic process.

It should be noted that because of the particular topology and sampling that we assume (inA1
and A2), on an averagex2 to xN−1 are updatedtwice the number of timesx1 andxN are up-
dated. For example, ifN = 3, then A1 and A2 lead to solving (in expectation) the problem
minx1,x2,x3∈M f1(x1) + 2f2(x2) + f3(x3) + ρ(d1(x1, x2)

2 + d2(x2, x3)
2)/2. To resolve this

issue, we multiply the scalarαi to fi (and its Riemannian gradient) while updatingxis. Specif-
ically, αi = 1 if i = {1, N}, elseαi = 0.5. If gradxi

fi is the Riemannian gradient offi
at xi ∈ M, then the stochastic gradient descent algorithm updatesxi along the search direction
−(αigradxi

fi + ρgradxi
di) with the exponential mappingExpxi

: Txi
M → M, whereTxi

M is
the tangent space ofM atxi. The overall algorithm with concrete matrix expressions isin Table 1.
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Table 2: Proposed preconditioned gossip algorithm for (7)

1. At each time slott, pick an agenti 6 N − 1 randomly with uniform probability and compute
the Riemannian gradientsgrad

xi
fi, gradxi+1

fi+1, grad
xi
di, andgrad

xi+1
di with the matrix

representations shown in Table 1.
2. Given a stepsizeγt, updatexi andxi+1 as

xi+ = Exp
xi
(−γt(αigradxi

fi + ρgrad
xi
di)(W

T

iUi
WiUi

+ ρI)−1)

xi+1+ = Exp
xi+1

(−γt(αi+1gradxi+1
fi+1 + ρgrad

xi+1
di)(W

T

i+1Ui+1
Wi+1Ui+1

+ ρI)−1),

where WiUi
is the least-squares solution to the optimization problem

min
Wi∈R

ni×r ‖PΩi
(UiW

T

i )− PΩi
(X⋆

i )‖
2
F . Exp andαi are defined in Table 1.

The stochastic gradient descent algorithm in Table 1 converges to a critical point of (7)almost surely
[20]. The gradient updates require the computation of the Riemannian gradient of the cost function
in (7) and moving along the geodesics withexponentialmapping, both of which have closed-form
expressions on the Grassmann manifoldGr(r,m) [19]. Similarly, the matrix completion problem
specific gradient computations are shown in [9].

3.1 Computational complexity

For an update ofxi with the formulas shown in Table 1, the computational complexity depends on
the computation ofpartial derivativesof the cost function in (7), e.g.,Gradxi

fi. Particularly, in
the context of the problem (5), the computational cost isO(|Ωi|r

2 + nir
2 +mr). The Grassmann

manifold related ingredients, e.g.,Exp, costO(mr2 + r3).

3.2 Convergence analysis

Asymptotic convergence analysis of the algorithm in Table 1follows directly from the analysis in
[20, Theorem 1]. The key idea is that for a compact Riemannianmanifold all continuous functions of
the parameter can be bounded. This is the case for (7), which is on thecompactGrassmann manifold
Gr(r,m). Subsequently, under a decreasing stepsize condition and noisy gradient estimates (that is
an unbiased estimator of the batch gradient), the stochastic gradient descent algorithm in Table
1 converges to a critical point of (7) almost surely. Conceptually, while the standard stochastic
gradient descent setup deals with aninfinite stream of samples, we deal with a finite number of
samples (i.e., we pick an agenti 6 N − 1), which we repeat many times.

3.3 Preconditioned variant

The performance of first order algorithm (including stochastic gradients) often depends on thecon-
dition number(the ratio of maximum eigenvalue to the minimum eigenvalue)of the Hessian of the
cost function (at the minimum). The issue of ill-conditioning arises especially when dataX⋆ have
drawn power law distributed singular values. Additionally, a large value ofρ in (7) leads to conver-
gence issues for numerical algorithms. To this end, the recent works [6, 7, 9] exploit the concept of
manifold preconditioningin matrix completion. Specifically, the Riemannian gradients arescaled
by computationally cheap matrix terms that arise from the second order curvature information of the
cost function. Matrix scaling of the gradients is equivalent to multiplying an approximation of the
inverseHessian to gradients. This operation on a manifold requiresspecial attention. In particular,
the matrix scalingmustbe a positive definite operator on the tangent space of the manifold [7, 9].

Given the Riemannian gradientξxi
= gradxi

fi + ρgradxi
di computed by agenti, the proposed

manifold preconditioning is

ξxi
7→ ξxi

( WT
iUi

WiUi

︸ ︷︷ ︸

from completion

+ ρI
︸︷︷︸

from consensus

)−1, (8)
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Table 3: Proposed parallel variant for (7)

1. Define round1 as consisting of agentsi = 1, 3, . . . and their neighbors. Define round2 as
consisting of agentsi = 2, 4, . . . and their neighbors.

2. At each time slott, pick a roundj 6 2 randomly with uniform probability.
3. Given a stepsize, update the agents (and their corresponding neighbors) in parallel with the up-

dates proposed in Table 1 (or in Table 2).

whereWiUi
is the solution to the optimization problemminWi∈Rni×r ‖PΩi

(UiW
T
i )−PΩi

(X⋆
i )‖

2
F

andI is r × r identity matrix. The use of preconditioning (8) costsO(nir
2 + r3).

The termW
T
iUi

WiUi
is motivated by the fact that it is computationally cheap to compute and cap-

tures ablock diagonal approximationof the Hessian of the simplified (but related) cost function
‖UiW

T
iUi

−X
⋆
i ‖

2
F . The works [6, 7, 9] use suchpreconditionerswith superior performance. The

termρI is motivated by the fact that the second order derivative of the square of the Riemannian
geodesic distance is an identity matrix. Finally, it shouldbe noted that the matrix scaling is positive
definite, i.e.,WT

iUi
WiUi

+ ρI ≻ 0 and that the transformation (8) is on the tangent space. Equiva-
lently, if ξxi

belongs toTxi
M, thenξxi

(WT
iUi

WiUi
+ρI)−1 also belongs toTxi

M. This is readily
checked by the fact that the tangent spaceTxi

M atxi on the Grassmann manifold is characterized
by the set{ηxi

: ηxi
∈ R

m×r,UT
i ηxi

= 0}.

The proposed preconditioned variant of the stochastic gradient descent algorithm for (7) is shown
in Table 2. It should be noted that preconditioning the gradients does not affect the asymptotic
convergence guarantees of the proposed algorithm.

3.4 Parallel variant

AssumptionA1 on the network topology of agents allows to propose parallelvariants of the proposed
stochastic gradient descent algorithms in Tables 1 and 2. Tothis end, instead of picking one agent
at a time, we pick agents in such a way that it leads to a number of parallel updates.

We explain the idea forN = 5. Updates of the agents are divided into tworounds. In round1,
we pick agents1 and3, i.e., all theodd numbered agents. It should be noted that the neighbor of
agent1 is agent2 and the neighbor of agent3 is agent4. Consequently, the updates of agents1 and
2 are independent from those of agents3 and4 and hence, can be carried out in parallel. In round
2, we pick agents2 and4, i.e., all theevennumbered agents. The updates of agents2 and3 are
independent from those of agents4 and5 and therefore, can be carried out in parallel.

The key idea is thatrandomnessis on the rounds and not on the agents. For example, we pick a
roundj from {1, 2} with uniform probability. Once a round is picked, the updates on the agents
(that are part of this round) are performed with the same stepsize and in parallel. The stepsize is
updated when a new round is picked. The stepsize sequence satisfies the standard conditions, i.e., it
is square-summable and its summation is divergent. The overall algorithm in shown in Table 3.

To prove convergence, we define two new functions,

g1(x1, x2, . . .) = f1(x1) + f2(x2) + . . .+
ρ

2
(d1(x1, x2)

2 + d3(x3, x4)
2 + . . .)

g2(x2, x3, . . .) = f2(x2) + f3(x3) + . . .+
ρ

2
(d2(x2, x3)

2 + d4(x4, x5)
2 + . . .),

(9)

that consist of terms from the cost function in (7). The algorithm in Table 3 is then interpreted as the
standard stochastic gradient descent algorithm applied tothe problem

min
xi∈M

g1(x1, x2, . . .) + g2(x2, x3, . . .). (10)

with two “samples” that are chosen randomly at each time slot. Consequently, following the standard
arguments, the algorithm in Table 3 converges asymptotically to a critical point of (10). However,
it should also be noted that the addition ofg1 andg2 leads tox2 to xN−1 being updated (on an
average)twice the number of timesx1 andxN are updated. This is handled by multiplyingαi to

6



Table 4: Proposed algorithm for continuously changing network topology

1. At each time slott, pick a pair of agents, sayi andk, randomly with uniform probability.
2. Compute the Riemannian gradientsgrad

xi
fi, gradxk

fk, grad
xi
dik, andgrad

xk
dik as

Gradxi
fi = (PΩi

(UiW
T

iUi
)− PΩi

(X⋆

i ))WiUi

grad
xi
fi = Gradxi

fi −Ui(U
T

i Gradxi
fi)

grad
xi
dik = −Log

xi
(xk)

grad
xk

dik = −Log
xk

(xi),

whereLog is defined in Table 1.
3. Given a stepsizeγt, updatexi andxk as

xi+ = Exp
xi
(−γt(gradxi

fi + ρgrad
xi
dik))

xk+ = Exp
xk

(−γt(gradxk
fk + ρgrad

xk
dik)),

where the exponential mappingExp
xi

is defined in Table 1.

fi while updatingxis, whereαi = 1 if i = {1, N}, elseαi = 0.5. Finally, the algorithm in Table
(3) converges to a critical point of (7). It should emphasized that parallelization of the updates is for
free by virtue of construction of functions in (9).

3.5 Extension to continuously changing network topology

The algorithm in Table 1 assumes that the neighbors of the agents are predefined in a particular
way (assumptionA1). However, in many scenarios the network topology changes with time [16].
To simulate the scenario, we first consider a fully connectednetwork ofN agents. The number of
unique edges isN(N − 1)/2. We pick an edgeik (the edge that connects agentsi andk) randomly
with uniform probability and drop all the other edges. Equivalently, only one edge isactiveat any
time slot. Consequently, we update agentsi andk with a gradient descent update, e.g., based on
Table 1 or Table 2. The overall algorithm is shown in Table 4. Following the arguments in Section
3.2, it is straightforward to see that the proposed algorithm converges almost surely to a critical point
of a problem that combines completion along with consensus,i.e.,

min
x1,...,xN∈M

(N − 1)
∑

i

fi(xi) +
ρ

2

∑

i<k

dik(xi, xk)
2, (11)

wheredik(xi, xk) is the Riemannian geodesic distance betweenxi andxk.

4 Numerical comparisons

Our proposed algorithms in Table 1 (Online Gossip) and in Table 2 (Precon Online Gossip) and their
parallel variants, Parallel Gossip and Precon Parallel Gossip, are compared on different problem in-
stances. The implementations are based on the Manopt toolbox [22] with certain operations relying
on the mex files supplied with [9]. We also show comparisons with D-LMaFit, the decentralized
algorithm proposed in [15] on smaller instances as the D-LMaFit code (supplied by the authors) is
not tuned to large-scale instances. As the mentioned algorithms are well suited for different scenar-
ios, we compare them against the number ofupdatesperformed by the agents. We fix the number of
agentsN to 6. Online algorithms are run for a maximum of1000 iterations. The parallel variants are
run for400 iterations. Overall, agents1 andN perform a maximum of200 updates (rest all perform
400 updates). D-LMaFit is run for400 iterations, i.e., each agent performs400 updates. Algorithms
are initialized randomly. The stepsize sequence is defined asγt = γ0/t, wheret is the time slot and
γ0 is set using cross validation. For simplicity, all figures only show the plots for agents1 and2.

All simulations are performed in Matlab on a2.7 GHz Intel Core i5 machine with8 GB of RAM.
For each example considered here, anm × n random matrix of rankr is generated as in [4]. Two
matricesA ∈ R

m×r andB ∈ R
n×r are generated according to a Gaussian distribution with zero

7



mean and unit standard deviation. The matrix productAB
T gives a random matrix of rankr. A

fraction of the entries are randomly removed with uniform probability and noise (sampled from
the Gaussian distribution with mean zero and standard deviation 10−6) is added to each entry to
construct the training setΩ andX⋆. The over-sampling ratio (OS) is the ratio of the number of
known entries to the matrix dimension, i.e,OS = |Ω|/(mr + nr − r2). We also create a test set by
randomly picking a small set of entries fromAB

T . The matricesX⋆
i are created by distributing the

number ofn columns ofX⋆ equally among the agents. The training and test sets are alsopartitioned
similarly.
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(b) Performance of online and parallel variants.
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(c) Effect of preconditioning on training.

0 10 20 30 40
Every 10th update

10-5

10-4

10-3

10-2

M
ea

n 
sq

ua
re

 e
rr

or
 o

n 
te

st
 s

et

Agent 1
Agent 2
Precon agent 1
Precon agent 2

(d) Effect of preconditioning on test error.

0 10 20 30 40
Every 10th update

10-12

10-10

10-8

10-6

10-4

10-2

100

102

M
ea

n 
sq

ua
re

 e
rr

or
 o

n 
tr

ai
ni

ng
 s

et

Online agent 1
Online agent 2
Online distance 1 - 2
D-LMaFit agent 1
D-LMaFit agent 2
D-LMaFit distance 1 - 2

(e) Online Gossip outperforms D-LMaFit.
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(f) MovieLens 20 M: consensus of the agents.

Figure 1: Performance of proposed algorithms in different scenarios.

Case 1: effect of ρ. We consider a problem instance of size 10 000×100 000 of rank5 and OS6.
Two scenarios withρ = 103 andρ = 1010 are considered. Figure 1(a) shows the performance of
Online Gossip. Not surprisingly, forρ = 1010, we only see consensus (the distance between agents
1 and2 tends to zero). Forρ = 103, we see both completion and consensus, which validates the
theory.

Case 2: performance of online versus parallel. We consider Case 1 withρ = 103. Figure 1(b)
shows the performance of Online Gossip and Parallel Gossip,both of which show a similar behavior
on the training and test (not shown here) sets.

Case 3: ill-conditioned instances. We consider a problem instance of size 5 000×50 000 of rank
5 and impose an exponential decay of singular values with condition number500 and OS6. Figure
1(c) shows the performance of Online Gossip and its preconditioned variant forρ = 103. During the
initial updates, the preconditioned variant aggressivelyminimizes the completion term of (5), which
shows the effect of the preconditioner (8). Eventually, consensus among the agents is achieved.
Overall, the preconditioned variant shows a superior performance on both the training and test sets
as shown in Figures 1(c) and 1(d).

Case 4: Comparisons with D-LMaFit [15]. We consider a problem instance of size500× 12000,
rank5, and OS6. D-LMaFit is run with the default parameters. For Online Gossip, we setρ = 103.
As shown in Figure 1(e), Online Gossip quickly outperforms D-LMaFit. Overall, Online Gossip
takes fewer number of updates to reach a high accuracy.

Case 5: MovieLens 20M dataset [23]. Finally, we show the performance of Online Gossip on
the MovieLens-20M dataset of20000263 ratings by138493 users for26744 movies. (D-LMaFit is
not compared as it does not scale to this dataset.) We perform5 random80/20 train/test partitions.
We split both the train and test data amongN = 4 agents along the number of users such that
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each agent has ratings for26744 movies and34624 (except agent4, which has34621) unique
users. This ensures that the ratings are distributed evenlyamong the agents. We run Online Gossip
with ρ = 107 (through cross validation) and for800 iterations. Figure 1(f) shows that asymptotic
consensus is achieved among the four agents. It should be noted that the distance between agents2
and3 decreases faster than others as agents2 and3 are updated (on an average) twice the number
of times than agents1 and4 (assumptionA1). Table 5 shows the normalized mean absolute errors
(NMAE) obtained on thefull test set averaged over five runs. NMAE is defined as the mean absolute
error (MAE) divided by variation of the ratings. Since the ratings vary from0.5 to 5, NMAE is
MAE/4.5. We obtain the lowest NMAE for rank5.

Table 5: Performance of Online Gossip on MovieLens 20M dataset

Rank3 Rank5 Rank7 Rank9
NMAE on test set 0.1519± 3 · 10−3 0.1507± 3 · 10−3 0.1531± 2 · 10−3 0.1543± 1 · 10−3

5 Conclusion

We have proposed a Riemannian gossip approach to the decentralized matrix completion problem.
Specifically, the completion task is distributed among a number of agents, which are then required to
achieve consensus. Exploiting the gossip framework, this is modeled as minimizing a weighted sum
of completionandconsensusterms on the Grassmann manifold. The rich geometry of the Grass-
mann manifold allowed to propose a novel stochastic gradient descent algorithm for the problem
with simple updates. Additionally, we have proposed two variants – preconditioned and parallel –
of the algorithm for dealing with different scenarios. Numerical experiments show the competitive
performance of the proposed algorithms on different benchmarks.
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