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Abstract

Stochastic variance reduction algorithms have recently become popular for minimiz-
ing the average of a large, but finite, number of loss functions. In this paper, we propose
a novel Riemannian extension of the Euclidean stochastic variance reduced gradient al-
gorithm (R-SVRG) to a compact manifold search space. To this end, we show the de-
velopments on the Grassmann manifold. The key challenges of averaging, addition, and
subtraction of multiple gradients are addressed with notions like logarithm mapping and
parallel translation of vectors on the Grassmann manifold. We present a global conver-
gence analysis of the proposed algorithm with a decay step-size and a local convergence
rate analysis under a fixed step-size with under some natural assumptions. The proposed
algorithm is applied on a number of problems on the Grassmann manifold like principal
components analysis, low-rank matrix completion, and the Karcher mean computation. In
all these cases, the proposed algorithm outperforms the standard Riemannian stochastic
gradient descent algorithm.

1 Introduction

A general loss minimization problem is defined as minw f(w), where f(w) := 1
N

∑N
n=1 fn(w),

w is the model variable, N is the number of samples, and fn(w) is the loss incurred on n-th
sample. The full gradient decent (GD) algorithm requires evaluations of N derivatives, i.e.,∑N

n=1∇fn(w), per iteration, which is computationally heavy when N is very large. A popular
alternative is to use only one derivative ∇fn(w) per iteration for n-th sample, which is the
basis of the stochastic gradient descent (SGD) algorithm. When a relatively large step-size
is used in SGD, the train loss decreases fast in the beginning, but results in big fluctuations
around the solution. On the other hand, when a small step-size is used, SGD requires a large
number of iterations to converge. To circumvent this issue, SGD starts with a relatively large
step-size and decreases it gradually with iterations.

Recently, variance reduction techniques have been proposed to accelerate the convergence
of SGD [1, 2, 3, 4, 5, 6, 7]. Stochastic variance reduced gradient (SVRG) is a popular
algorithm that enjoys superior convergence properties [1]. For smooth and strongly convex
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functions, SVRG has convergence rates similar to those of stochastic dual coordinate ascent
[5] and stochastic average gradient (SAG) algorithms [3]. Garber and Hazan [8] analyze the
convergence rate for SVRG when f is a convex function that is a sum of non-convex (but
smooth) terms and apply this result to the principal component analysis (PCA) problem.
Shalev-Shwartz [9] also proposes similar results. Allen-Zhu and Yuan [10] further study the
same case with better convergence rates. Shamir [11] studies specifically the convergence
properties of the variance reduction PCA algorithm. Very recently, Allen-Zhu and Hazan [12]
propose a variance reduction method for faster non-convex optimization. However, it should
be noted that all these cases assume that search space is Euclidean.

In this paper, we deal with problems where the variables have a manifold structure. They
include, for example, the low-rank matrix completion problem [13], the Karcher mean com-
putation problem, and the PCA problem. In all these problems, optimization on Riemannian
manifolds has shown state-of-the-art performance. The Riemannian framework exploits the
geometry of the constrained matrix search space to design efficient optimization algorithms
[14]. Specifically, the problem minw∈M f(w), whereM is a Riemannian manifold, is solved as
an unconstrained optimization problem defined over the Riemannian manifold search space.
Bonnabel [15] proposes a Riemannian stochastic gradient algorithm (R-SGD) that extends
SGD from the Euclidean space to Riemannian manifolds.

Building upon the work of Bonnabel [15], we propose a novel (and to the best of our
knowledge, the first) extension of the stochastic variance reduction gradient algorithm in the
Euclidean space to the Riemannian manifold search space (R-SVRG). This extension is not
trivial and requires particular consideration in dealing with averaging, addition and subtrac-
tion of multiple gradients at different points on the manifold M. To this end, this paper
specifically focuses on the Grassmann manifold Gr(r, d), which is the set of r-dimensional
linear subspaces in Rd. Nonetheless, the proposed algorithm and the analysis presented in
this paper can be generalized to other compact Riemannian manifolds.

The paper is organized as follows. Section 2 discusses the Grassmann manifold and three
popular optimization problems, where the Grassmann manifold plays an essential role. The
detailed description of R-SVRG are given in Section 3. Section 4 presents the global conver-
gence analysis and the local convergence rate analysis of R-SVRG. In Section 5, numerical
comparisons with R-SGD on the three problems suggest superior performance of R-SVRG.
The concrete proofs of the main theorems and the related lemmas, and additional numerical
experiments are shown in Sections A, B, and C, respectively, of the supplementary file. Our
proposed R-SVRG is implemented in the Matlab toolbox Manopt [16]. The Matlab codes for
the proposed algorithms are available at https://bamdevmishra.com/codes/RSVRG/.

2 Grassmann manifold and problems on Grassmann manifold

This section briefly introduces the Grassmann manifold and motivates three problems on the
Grassmann manifold.

Grassmann manifold. An element on the Grassmann manifold is represented by a
d × r orthogonal matrix U with orthonormal columns, i.e., UTU = I. Two orthogonal
matrices represent the same element on the Grassmann manifold if they are related by right
multiplication of a r × r orthogonal matrix O ∈ O(r). Equivalently, an element of the
Grassmann manifold is identified with a set of d× r orthogonal matrices [U] := {UOr : O ∈
O(r)}. In other words, Gr(r, d) := St(r, d)/O(r), where St(r, d) is the Stiefel manifold that is
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the set of matrices of size d× r with orthonormal columns. The Grassmann manifold has the
structure of a Riemannian quotient manifold [14, Section 3.4].

Geodesics on manifolds generalize the concept of straight lines in the Euclidean space.
For every vector in the tangent space ξ ∈ TwM at w ∈M, there exists an interval I about 0
and a unique geodesic γe(t, w, ξ) : I →M such that γe(0) = w and γ̇e(0) = ξ. The mapping
Expw : TwM → M : ξ 7→ Expwξ = γe(1, w, ξ) is called the exponential mapping at w. If
M is a complete manifold, exponential mapping is defined for all vectors ξ ∈ TwM. The
exponential mapping for the Grassmann manifold from U(0) := U ∈ Gr(r, d) in the direction
of ξ ∈ TU(0) is given in closed form as [14, Section 5.4]

U(t) = [U(0)V W]

[
cos tΣ
sin tΣ

]
VT , (1)

where ξ = WΣVT is the rank-r singular value decomposition of ξ. The cos(·) and sin(·)
operations are only on the diagonal entries.

Parallel translation transports a vector field along the geodesic curve γ that satisfies
P a←aγ = γ(a) and D

dt(P
t←a
γ ξ(a)) = 0 [14, Section 5.4], where P b←aγ is the parallel translation

operator sending ξ(a) to ξ(b). The parallel translation of ζ ∈ TU(0) on the Grassmann
manifold along γ(t) with ξ is given in closed form by

ζ(t) =

(
[U(0)V W]

[
− sin tΣ
cos tΣ

]
WT + (I−WWT )

)
ζ. (2)

Given two points w and z onM, the logarithm mapping or simply log mapping maps z to a
vector ξ ∈ TwM on the tangent space at w. Specifically, it is defined by Logw :M→ TwM :
Expwξ 7→ Logw(Expwξ) = ξ. It should be noted that it satisfies dist(w, z) = ‖Logw(z)‖w,
where dist : M×M → R is the shortest distance between w and z. The logarithm map of
U(t) at U(0) on the Grassmann manifold is given by

ξ = logU(0)(U(t)) = W arctan(Σ)VT , (3)

where WΣVT is the rank-r singular value decomposition of (U(t)−U(0)U(0)TU(t))(U(0)TU(t))−1.
Problems on Grassmann manifold. In this paper, we focus on three popular problems

on the Grassmann manifold, which are the PCA, low-rank matrix completion, and the Karcher
mean computation problems. In all these problems, full gradient methods, e.g., the steepest
descent algorithm, become prohibitively computationally expensive when N is very large, and
the stochastic gradient approach is one promising way to achieve scalability.

Given an orthonormal matrix projector U ∈ St(r, d), the PCA problem is to minimize the
sum of squared residual errors between projected data points and the original data as

min
U∈St(r,d)

1

N

N∑
n=1

‖xn −UUTxn‖22, (4)

where xn is a data vector of size d × 1. The problem (4) is equivalent to maximizing
1
N

∑N
n=1 x

T
nUUTxn. Here, the critical points in the space St(r, d) are not isolated because

the cost function remains unchanged under the group action U 7→ UO for all orthogonal
matrices O of size r × r. Subsequently, the problem (4) is an optimization problem on the
Grassmann manifold Gr(r, d).

3



The Karcher mean is introduced as a notion of mean on Riemannian manifolds by Karcher
[17]. It generalizes the notion of an “average” on the manifold. Given N points on the
Grassmann manifold with matrix representations Q1, . . . ,QN , the Karcher mean is defined
as the solution to the problem

min
U∈St(r,d)

1

2N

N∑
n=1

(dist(U,Qn))2, (5)

where dist is the geodesic distance between the elements on the Grassmann manifold. The
gradient of this loss function is 1

N

∑N
n=1−LogU(Qn), where Log is the log map defined in

(3). The Karcher mean on the Grassmann manifold Gr(r, d) is frequently used for computer
vision problems such as visual object categorization and pose categorization [18]. Since re-
cursive calculations of the Karcher mean are needed with each new arriving visual image, the
stochastic gradient algorithm becomes an appealing choice for large datasets.

The matrix completion problem is to complete an incomplete matrix X, say of size d×N ,
from a small number of entries. For this purpose, it assumes a low-rank model for the matrix.
If Ω is the set of the indices for which we know the entries in X, the rank-r matrix completion
problem amounts to solving the problem

min
U∈Rd×r,A∈Rr×N

‖PΩ(UA)− PΩ(X)‖2F , (6)

where the operator PΩ(Xij) = Xij if (i, j) ∈ Ω and PΩ(Xij) = 0 otherwise is called the
orthogonal sampling operator. Partitioning X = [x1,x2, . . . ,xn], the problem (6) is equivalent
to the problem

min
U∈Rd×r,an∈Rr

1

N

N∑
n=1

‖PΩn(Uan)− PΩn(xn)‖22, (7)

where xn ∈ Rd and the operator PΩn the sampling operator for the n-th column. Given U,
an in (7) admits a closed-form solution. Consequently, the problem (7) only depends on the
column space of U and is on the Grassmann manifold [19].

3 Riemannian stochastic variance reduced gradient on Grass-
mann manifold

After a brief explanation of the variance reduced gradient variants in the Euclidean space, the
Riemannian stochastic variance reduced gradient on the Grassmann manifold is proposed.

Variance reduced gradient variants in the Euclidean space. The SGD update
in the Euclidean space is wt+1 = wt − ηvt, where vt is a randomly selected vector that is
called as the stochastic gradient and η is the step-size. SGD assumes an unbiased estimator
of the full gradient as En[∇fn(wt)] = ∇f(wt). Many recent variants of the variance reduced
gradient of SGD attempt to reduce its variance E[‖vt − ∇f(wt)‖2] as t increases to achieve
better convergence [1, 2, 3, 4, 5, 6, 7]. SVRG, proposed in [1], introduces an explicit variance
reduction strategy with double loops where s-th outer loop, called s-th epoch, has ms inner
iterations. SVRG first keeps w̃ = ws−1

ms
or w̃ = ws−1

t for randomly chosen t ∈ {1, . . . ,ms−1}
at the end of (s−1)-th epoch, and also sets the initial value of s-th epoch as ws0 = w̃. It
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then computes a full gradient ∇f(w̃). Subsequently, denoting the selected random index
i ∈ {1, . . . , N} by ist , SVRG randomly picks ist -th sample for each t ≥ 1 at s ≥ 1 and
computes the modified stochastic gradient vst as

vst = ∇fist (w
s
t−1)−∇fist (w̃

s−1) +∇f(w̃s−1). (8)

It should be noted that SVRG can be regarded as one special case of S2GD (Semi-stochastic
gradient descent), which differs in the number of inner loop iterations chosen [20].

Proposed Riemannian extension of SVRG on Grassmann manifold (R-SVRG).
We propose a Riemannian extension of SVRG, i.e., R-SVRG. Here, we denote the Riemannian

stochastic gradient for ist -th sample as gradfist (Ũ
s−1

) and the modified Riemannian stochastic
gradient as ξst instead of vst to show differences with the Euclidean case.

The way R-SVRG reduces the variance is analogous to the SVRG algorithm in the Eu-

clidean case. More specifically, R-SVRG keeps a Ũ
s−1 ∈M = Gr(r, d) after ms−1 stochastic

update steps of (s−1)-th epoch, and computes the full Riemannian gradient gradf(Ũ
s−1

) =
1
N

∑N
i=1 gradfi(Ũ

s−1
) only for this stored Ũ

s−1
. The algorithm also computes the Riemannian

stochastic gradient gradfist (Ũ
s−1

) that corresponds to this ist -th sample. Then, picking ist -th
sample for each t-th inner iteration of s-th epoch at Us

t−1, we calculate ξst in the same way

as vst in (8), i.e., by modifying the stochastic gradient gradfist (U
s
t−1) using both gradf(Ũ

s−1
)

and gradfist (Ũ
s−1

). Translating the right-hand side of (8) to the manifold M involves the

sum of gradfist (U
s
t−1), gradfist (Ũ

s−1
), and gradf(Ũ

s−1
), which belong to two separate tangent

spaces TUs
t−1
M and T

Ũ
s−1M. This operation requires particular attention on a manifold and

parallel translation provides an adequate and flexible solution to handle multiple elements on

two separated tangent spaces. More concretely, gradfist (Ũ
s−1

) and gradf(Ũ
s−1

) are firstly
parallel-transported to TUs

t−1
M at the current point Us

t−1, then they are ready to be added
to gradfist (U

s
t−1) on TUs

t−1
M. Consequently, the modified Riemannian stochastic gradient ξst

at t-th inner iteration of s-th epoch is set as

ξst = gradfist (U
s
t−1)− PUs

t−1←Ũ
s−1

γ

(
gradfist (Ũ

s−1
)
)

+ P
Us

t−1←Ũ
s−1

γ

(
gradf(Ũ

s−1
)
)
,(9)

where P
Us

t−1←Ũ
s−1

γ (·) represents a parallel-translation operator from Ũ
s−1

to Us
t−1 on the

Grassmann manifold defined in (2). Furthermore, for this parallel translation, we need to cal-

culate the tangent vector from Ũ
s−1

to Us
t−1. This is given by the logarithm mapping defined

in (3). Consequently, the final update rule of R-SVRG is defined as Us
t = ExpUs

t−1
(−ηξst ). It

should be noted that the modified direction ξst is also a Riemannian stochastic gradient of f
at Us

t−1.
Conditioned on Us

t−1, we take the expectation with respect to ist and obtain

Eist [ξ
s
t ] = Eist [gradfist (U

s
t−1)]− PUs

t−1←Ũ
s−1

γ

(
Eist [gradfist (Ũ

s−1
)]− gradf(Ũ

s−1
)
)

= gradf(Us
t−1)− PUs

t−1←Ũ
s−1

γ

(
gradf(Ũ

s−1
)− gradf(Ũ

s−1
)
)

= gradf(Us
t−1).

The theoretical analysis of convergence of the Euclidean SVRG algorithm assumes that
the beginning vector Us

0 of s-th epoch is set to be the average or randomly selected value of
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the (s−1)-th epoch [1, Figure 1]. On the other hand, the set of the last vector in the (s−1)-
th epoch, i.e., Us−1

ms−1
shows the superior performances on the Euclidean SVRG algorithm.

Therefore, for our local convergence rate analysis in Theorem 4.3, this paper also uses, as
option I, the mean value of Ũ

s
= gms(U

s
1, . . .U

s
ms

) as Ũ
s
, where gn(U1, . . . ,Un) is the

Karcher mean on the Grassmann manifold. This option can also simply choose Ũ
s

= Us
t for

t ∈ {1, . . . ,ms} at random. In addition, as option II, we can also use the last vector in the
(s−1)-th epoch, i.e., Ũ

s
= Us

ms
The overall algorithm with a fixed step-size is summarized in

Algorithm 1.

Algorithm 1 Algorithm for R-SVRG with a fixed step-size.

Require: Update frequency ms > 0 and step-size η > 0.

1: Initialize Ũ
0
.

2: for s = 1, 2, . . . do

3: Calculate the Riemannian full gradient gradf(Ũ
s−1

).

4: Store Us
0 = Ũ

s−1
.

5: for t = 1, 2, . . . ,ms do
6: Choose ist ∈ {1, . . . , N} uniformly at random.

7: Calculate the tangent vector ζ from Ũ
s−1

to Us
t−1 by logarithm mapping in (3).

8: Calculate the modified Riemannian stochastic gradient ξst in (9) by parallel-

translating gradf(Ũ
s−1

) and gradfist (Ũ
s−1

) along ζ in (2) as

ξst = gradfist (U
s
t−1)− PUs

t−1←Ũ
s−1

γ

(
gradfist (Ũ

s−1
)− gradf(Ũ

s−1
)
)

.

9: Update Us
t from Us

t−1 as Us
t = ExpUs

t−1
(−ηξst ) with the exponential mapping (1).

10: end for
11: option I: Ũ

s
= gms(U

s
1, . . . ,U

s
ms

) (or Ũ
s

= Us
t for randomly chosen t ∈ {1, . . . ,ms}).

12: option II: Ũ
s

= Us
ms

.
13: end for

Additionally, the variants of the variance reduced SGD need full gradient calculation every
epoch at the beginning. This poses a bigger overhead than the ordinal SGD algorithm at the
beginning of the process, and eventually, this causes cold-start property on them. To avoid
this, [20] in the Euclidean space proposes to use standard SGD updating only for first epoch.
This paper also adopts this simple modification of R-SVRG, denoted as R-SVRG+. We do
not analyze this extension and leave this as an open problem.

As mentioned earlier, each iteration of R-SVRG has double loops to reduce the variance
of the modified stochastic gradient ξst . s-th epoch, i.e., outer loop, requires N + 2ms gradient

evaluations, where N is for the full gradient gradf(Ũ
s−1

) at the beginning of each s-th epoch
and 2ms is for inner iterations since each inner step needs two gradient evaluations, i.e.,

gradfist (U
s
t−1) and gradfist (Ũ

s−1
). However, if gradfist (Ũ

s−1
) for each sample are stored at

the beginning of s-th epoch like SAG, the evaluations for each inner loop result in ms. Finally,
s-th epoch requires N + ms evaluations. It is natural to choose ms to be the same order of
N , but slightly larger (for example ms = 5N for non-convex problems is suggested in [1]).

6



4 Main result: convergence analysis

In this section, we provide the results of our convergence analysis. The actual proofs of all
the theorems and lemmas are given in the supplementary material.

We first introduce a global convergence result under a decay step-size below.

Theorem 4.1. Consider Algorithm 1 on a connected Riemannian manifold M of which
injectivity radius is uniformly bounded from below by I > 0. Suppose that the sequence of step-
sizes (ηst )ms≥t≥1,s≥1 satisfies the condition that

∑
(ηst )

2 <∞ and
∑
ηst = +∞. Suppose there

exists a compact set K such that wst ∈ K for all t ≥ 0. We also suppose that the gradient
is bounded on K, i.e., there exists A > 0 such that for all w ∈ K and n ∈ {1, 2, . . . , n},
and we have ‖gradf(w)‖ ≤ A/3 and ‖gradfn(w)‖ ≤ A/3. Then f(wst ) converges a.s. and
gradf(wst )→ 0 a.s. .

Proof. Note that ξst ≤ A from the triangle inequality. The proof is done by bounding above
the expectation of f(wst+1)− f(wst ) and ‖gradf(wst+1)‖2−‖gradf(wst )‖2. See Theorem B.2
for details of the proof.

Then, we show a local convergence rate analysis. For this purpose, we first show a lemma
that upper bounds the variance of ξst . Subsequently, the local convergence rate theorem for
R-SVRG in Algorithm 1 is given. It should be also noted that the lemma and theorem
in this section hold for any compact manifold. In addition, this analysis holds under a fixed
step-size setup. Here, we assume throughout the following analysis that the functions fn are
β-Lipschitz continuously differentiable (See Assumption 1 in Section B).

Lemma 4.2. Let Eist [·] be the expectation with respect to the distribution of the random
choice of ist . When each gradfn is β-Lipschitz continuously differentiable, the upper bound of
the variance of ξst is given by

Eist [‖ξ
s
t ‖2] ≤ β2(14(dist(wst−1, w

∗))2 + 8dist(w̃s−1, w∗))2).

Proof. The proof is analogous to that of SVRG algorithm in the Euclidean space. How-
ever, the distance evaluations of points should be done appropriately on the corresponding
same tangent space using parallel translation. The actual proof is in Lemma C.3 of the
supplementary material file.

Lemma 4.2 implies that the variance of ξst converges to zero when both Us
t and Ũ

s−1

converge to U∗. Finally, we provide the main theorem of this paper for the local convergence
rate of R-SVRG.

Theorem 4.3. Let M be the Grassmann manifold and U∗ ∈ M be a non-degenerate local
minimizer of f (i.e., gradf(U∗) = 0 and the Hessian Hessf(U∗) of f at U∗ is positive
definite). Assume that there exists a convex neighborhood U of U∗ ∈ M and a positive real
number σ such that the smallest eigenvalue of the Hessian of f at each U ∈ U is not less
than σ. When each gradfn is β-Lipschitz continuously differentiable and η > 0 is sufficiently
small such that 0 < η(σ − 14ηβ2) < 1, it then follows that for any sequence {Ũs} generated
by the algorithm converging to U∗, there exists K > 0 such that for all s > K,

E[(dist(Ũ
s
,U∗))2] ≤ 4(1 + 8mη2β2)

ηm(σ − 14ηβ2)
E[(dist(Ũ

s−1
,U∗))2].
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Proof. The proof starts with bounding above the expectation of the distance between Us
t and

U∗ with respect to the random choice of ist , where the curvature of the Grassmann manifold
and Lemma 6 in [21], which corresponds to the law of cosines in the Euclidean space, are
fully used. See Theorem C.5 for the complete proof.

5 Numerical comparisons

This section compares the performance of R-SVRG(+) with the Riemannian extension of
SGD, i.e., R-SGD, where the Riemannian stochastic gradient algorithm is gradfist (U

s
t−1)

instead of ξst in (9). We also compare with R-SD, which is the Riemannian steepest descent
algorithm with the backtracking line search [14, Chapters 4]. We consider both fixed step-
size as well as decay step-size sequences. The decay step-size sequence uses the decay ηk =
η0(1 + η0λbk/msc)−1 where k is the number of iterations used. We select ten choices of η0,
and consider three λ = {10−1, 10−2, 10−3}. In addition, since the global convergence needs
a decay step-size condition and the local convergence rate analysis holds for a fixed step-
size (Section 4), we consider a hybrid step-size sequence that follows the decay step-size at
less than sTH epoch, and subsequently switches to a fixed step-size. All experiments use
sTH = 5 in this experiment. ms = 5N is also fixed by following [1], and batch-size is fixed
to 10. In all the figures, the x-axis is the computational cost measured by the number of
gradient computations divided by N . Algorithms are initialized randomly and are stopped
when either the stochastic gradient norm is below 10−8 or the number of iterations exceeds
100. Additional numerical experiments are shown in Section C of the supplementary material
file. It should be noted that all results except R-SD are the best-tuned results. All simulations
are performed in Matlab on a 2.6 GHz Intel Core i7 PC with 16 GB RAM.

PCA problem (4). We first consider the PCA problem. Figures 1(a)-(c) show the results
of the train loss, optimality gap, and the norm of gradient, respectively, where N = 10000,
d = 20, and r = 5. η0 is {10−3, 2 × 10−3, . . . , 10−2}. The optimality gap evaluates the
performance against the minimum loss, which is obtained by the Matlab function pca. Figure
1(a) shows the enlarged results of the train loss, where all algorithms of R-SVRG(+) yield
better convergence properties. Among the step-size sequences of R-SVRG(+), the hybrid
sequence shows the best performance among all. Between R-SVRG and R-SVRG+, the
latter shows superior performance for all step-size sequences. For the optimality gap plots in
Figure 1(b), the results follow similar trends as those of train loss plots. In Figure 1(c), while
the gradient norm of SGD stays at higher values, those of R-SVRG and R-SVRG+ converge
to lower values in all cases.

Karcher mean problem (5). We compute the Karcher mean of N number of r-
dimensional subspaces in Rd. Figures 2(a)-(c) show the results of the train loss, the enlarged
train loss, and the norm of gradient, respectively, where N = 1000, d = 300, and r = 5. The
ten choices of η0 are {0.1, 0.2, . . . , 1.0}. R-SVRG(+) outperforms R-SGD, and the final loss
of R-SVRG(+) is less than that of R-SD. It should be noted that R-SVRG+ with the fixed
and decay step-sizes decreases faster in the beginning, but eventually, R-SVRG converges to
lower losses.

Matrix completion problem (7). The proposed algorithms are also compared with
Grouse [19], a state-of-the-art stochastic descent algorithm on the Grassmann manifold. We
first consider a synthetic dataset with N = 5000, d = 500 with rank r = 5. Each experiment is
initialized randomly as suggested in [22]. The ten choices of η0 are {10−3, 2×10−3, . . . , 10−2}
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for R-SGD and R-SVRG(+) and {0.1, 0.2, . . . , 1.0} for Grouse. This instance considers the loss
on a test set Γ, which is different from the training set Ω. We also consider the lower condition
number (CN) of the matrix, where the CN represents the ratio of the largest to the lowest
singular value a matrix. This instance uses CN=5. The over-sampling ratio (OS) is 5, where
the OS expresses the known number of entries. An OS of 5 implies that 5(N+d−r)r samples
are randomly and uniformly sampled out of the total Nd entries as known entries. Figures
3(a) and (b) show the results of loss on test set Γ and the norm of gradient, respectively. The
results show the superior performance of our proposed algorithms.

Next, we consider the Jester dataset 1 [23] which consists of ratings of 100 jokes evaluated
by 24983 users. Each rating is a real number ranging from −10 to 10. We randomly extract
two ratings per user as the training set Ω and test set Γ. The algorithms are run by fixing
the rank to r = 5 with random initialization. η0 is chosen from {10−6, 2× 10−6, . . . , 10−5} for
SGD and SVRG(+) and {10−3, 2 × 10−3, . . . , 10−2} for Grouse. Figures 3(c) and (d) show
the superior performance of R-SVRG(+) on both the train and test sets.

As a final test, we compare the algorithms on the MovieLens-1M dataset, which is down-
loaded from http://grouplens.org/datasets/movielens/. The dataset has a million rat-
ings corresponding to 6040 users and 3952 movies. η0 is chosen from {10−5, 2×10−5, . . . , 10−4}.
Figures 3(e) and (f) show the results on the train and test set of all the algorithms except
Grouse, which faces issues with convergence on this datatset. R-SVRG(+) shows much faster
convergence speed than others, and R-SVRG is better than R-SVRG+ in terms of the final
test loss for all step-size algorithms.

(a) Train loss (enlarged). (b) Optimality gap. (c) Norm of gradient.

Figure 1: Performance evaluations on PCA problem.

6 Conclusion

We have proposed a Riemannian stochastic variance reduced gradient algorithm (R-SVRG).
The proposed algorithm stems from the variance reduced gradient algorithm in the Euclidean
space, but is now extended to Riemannian manifolds. The central difficulty of averaging,
addition, and subtraction of multiple gradients on a Riemannian manifold is handled with
classical notion of parallel transport. We proved that R-SVRG generates globally convergent
sequences with a decay step-size condition and is locally linearly convergent with a fixed step-
size under some natural assumptions. We have shown the developments on the Grassmann
manifold. Numerical comparisons on three popular problems on the Grassmann manifold
suggested the superior performance of R-SVRG on various different benchmarks.
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(a) Train loss. (b) Train loss (enlarged). (c) Norm of gradient.

Figure 2: Performance evaluations on Karcher mean problem.

(a) Test loss (synthetic). (b) Norm of gradient

(synthetic).

(c) Train loss (Jester).

(d) Test loss (Jester). (e) Train loss (MovieLens-1M). (f) Test loss (MovieLens-1M).

Figure 3: Performance evaluations on low-rank matrix completion problem.
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Supplementary material

A Global convergence analysis

We assume that the sequence of step-sizes (ηst )t≥1,s≥1 satisfies∑
(ηst )

2 < ∞ and
∑

ηst = +∞. (A.1)

We also note the following proposition.

Proposition A.1 ([24]). Let (Xn)n∈N be a non-negative stochastic process that has bounded positive
variations, i.e.,

∑∞
0 E([E(Xn+1−Xn)|Fn]+) <∞. Then, we call such a process as a quasi-martingale,

where

∞∑
n=0

|E[Xn+1 −Xn|Fn]| <∞ a.s. , and Xn converges a.s..

Now, we prove that the proposed algorithm converges a.s. under some assumptions when the
iteration sequences are guaranteed to stay in a compact set. It should be noted that ifM is compact,
especially if M is the Grassmann manifold, this assumption is satisfied.

Theorem A.2. Consider Algorithm 1 on a connected Riemannian manifold M of which injectivity
radius is uniformly bounded from below by I > 0. Suppose that the sequence of step-sizes (ηst )ms≥t≥1,s≥1
satisfies the condition (A.1). Then, supposing that there exists a compact set K, we assume wst ∈ K
for all t ≥ 0. Furthermore, we assume that the gradient gradf(w) is bounded on K, i.e., there
exists A > 0 such that for all w ∈ K and n ∈ {1, 2, . . . , n}, and we have ‖gradf(w)‖ ≤ A/3 and
‖gradfn(w)‖ ≤ A/3. Then f(wst ) converges a.s. and gradf(wst )→ 0 a.s.

Proof. This proof is similar to the one of the standard Riemannian SGD (see [15]). Since K is compact,
all continuous functions on K are bounded. Furthermore, because of ηst → 0, there exists t0 such that
ηstA < I for t ≥ t0. Now, we assume that t ≥ t0. From the triangle inequality that ‖ξst+1‖ ≤ A, and
hence there exists a geodesic Exp(−αηst ξst+1)0≤α≤1 linking wst and wst+1 as dist(wst , w

s
t+1) < I, ξst is

defined and bounded as

ξst = gradfist (wst−1)− Pw
s
t−1←w̃

s−1

γ

(
gradfist (w̃s−1)

)
+ P

ws
t−1←w̃

s−1

γ

(
gradf(w̃s−1)

)
≤ A/3 +A/3 +A/3 = A.

f(Exp(−ηst ξst+1)) = f(wst+1) and thus the Taylor formula implies that

f(wst+1)− f(wst ) ≤ −ηst 〈ξst+1, gradf(wst )〉+ (ηst )
2‖ξst+1‖2k1,

where k1 is an upper bound of the largest eigenvalues of the Riemannian Hessian of f . We denote as
Fst an increasing sequence of σ-algebras that consists of the variables until just before time t , i.e.,

Fst = {i11, . . . , i1m1
, . . . , is−11 , . . . , is−1ms−1

, is1, . . . , i
s
t−1}.
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Since wst is computed from i11 . . . , i
s
t , it is measurable in Fst+1. As ist+1 is independent from Fst+1 we

have

E[〈ξst+1, gradf(wst )〉|Fst+1]

= Eit+1s
[〈ξst+1, gradf(wst )〉]

= E[〈gradfist+1
(wst ), gradf(wst )〉|Fst+1]

−Pw
s
t←w̃

s−1

γ (E[〈gradfist+1
(w̃s−1), gradf(wst )〉|Fst+1]− E[〈gradf(w̃s−1), gradf(wst )〉|Fst+1])

= Eist+1
[〈gradfist+1

(wst ), gradf(wst )〉]

−Pw
s
t←w̃

s−1

γ (Eist+1
[〈gradfist+1

(w̃s−1), gradf(wst+1)〉]− 〈gradf(w̃s−1), gradf(wst+1)〉)
= Eist+1

[〈gradfist+1
(wst ), gradf(wst )〉]

−Pw
s
t←w̃

s−1

γ (〈gradf(w̃s−1), gradf(wst )〉 − 〈gradf(w̃s−1), gradf(wst )〉)
= Eist+1

[〈gradfist+1
(wst ), gradf(wst )〉]

= ‖gradf(wst )‖2,

which yields that

E[f(wst+1)− f(wst )|Fst+1] ≤ −ηst ‖gradf(wst )‖2 + (ηst )
2A2k1, (A.2)

as ‖ξst+1‖ ≤ A. As f(wst ) ≥ 0, this proves f(wst ) +
∑∞
t (ηst )

2A2k1 is a nonnegative supermartingale.
Therefore, f(wst ) converges a.s.. In addition, summing the inequalities yeilds∑

t≥t0

ηst ‖gradf(wst )‖2 ≤ −
∑
t≥t0

E[f(wst+1)− f(wst )|Fst ] +
∑
t≥t0

(ηst )
2A2k1. (A.3)

Now we show that the right-hand side term is bounded to prove that the left-hand side term
converges.

We see that f(wst ) satisfies the assumption of Proposition A.1 from summation of (A.2) over t.
Therefore, it can be confirmed that f(wst ) is a quasi-martingale that implies

∑
t≥t0 η

s
t ‖gradf(wst )‖2

converges a.s. from the inequality (A.3) where the first term in its right-hand side can be bounded by
its absolute value which stems from the proposition. Here, although ηst → 0, this is not equivalent to
that ‖gradf(wst )‖ converges a.s.. Then, it can only converge to 0 a.s. if ‖gradf(wst )‖ is guaranteed to
converge a.s..

Therefore, to prove that ‖gradf(wst )‖ converges a.s., we consider a process pst = ‖gradf(wst )‖2
which is clearly nonnegative. From the assumption, we can bound the second derivative as ‖gradf‖2
by k2 along the geodesic from wst towards wst+1, then we obtain from a Taylor expansion the relation

pst+1 − pst ≤ −2ηst 〈gradf(wst ), (∇2
ws

t
f)ξst+1〉+ (ηst )

2‖ξst+1‖2k2.

Furthermore, we bound the Hessian of f in the compact set from below by −k3. Then, we obtain

E(pst+1 − pst |Fst+1) ≤ 2ηst ‖gradf(wst )‖2k3 + (ηst )
2A2k2.

Consequently, the guaranteeing that the sum of the right term is finite represents equivalently that pst
is a quasi-martingale. Therefore, pt converges a.s. towards a value. This should be 0 as mentioned
above. This completes the proof.

B Local convergence rate analysis

We state local convergence rate properties of the algorithm of R-SVRG: local convergence to local
minimizers and its convergence rate.

We fist assume throughout the following analysis that the functions fn are β-Lipschitz continuously
differentiable below.
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Assumption 1. We assume that a Riemannian manifold (M, g) has a positive injectivity radius. A
real-valued functions fn : M → R are (locally) β-Lipschitz continuously differentiable such that it is
differentiable and there exists β such that, for all w, z in M with dist(w, z) < i(M). In this case, it
holds that [14, Section 7.4.1]

‖P 0←1
α gradf(z)− gradf(w)‖ ≤ βdist(z, w), (A.4)

where α is the unique shortest geodesic with α(0) = w and α(1) = z, and i(M) is the injectivity radius
which represents a lower bound on the size of the normal neighborhoods. P 0←1

α (·) is a transportation
operator from z to w.

Then, we derive the following lemma from the mean-value theorem.

Lemma B.1. Let f be a cost function on a Riemannian manifold (M, g) and let w∗ be a critical
point of f , i.e., gradf(w∗) = 0. Assume that there exists a convex neighborhood U of w∗ ∈ M and a
positive real number σ such that the smallest eigenvalue of the Hessian of f at each w ∈ U is not less
than σ. Then,

f(z) ≥ f(w) + 〈Exp−1w (z), gradf(w)〉w +
σ

2
‖Exp−1w (z)‖2w, w, z ∈ U

Proof. Let ξ = Exp−1w (z) for w, z ∈ U . From our assumption on f and the mean value theorem, we
have, for λ ∈ R sufficiently close to 1,

f(Expwλξ) = f(w) + λ〈gradf(w), ξ〉w + λ2
∫ 1

0

(1− t)〈Hessf (Expwtλξ) [ξ], ξ〉wdt

≥ f(w) + λ〈gradf(w), ξ〉w + λ2σ‖ξ‖2w
∫ 1

0

(1− t)dt

= f(w) + λ〈gradf(w), ξ〉w +
σ

2
λ2‖ξ‖2w.

It follows that

f(z) = f(Expw(ξ)) ≥ f(w) + 〈gradf(w), ξ〉w +
σ

2
‖ξ‖2w.

This completes the proof.

Second, we show a property of the Karcher mean on a general Riemannian manifold.

Lemma B.2. Let w1, . . . , wm be points on a Riemannian manifold M and let w be the Karcher mean
of the m points. For an arbitrary point p on M, we have

(dist(p, w))2 ≤ 4

m

m∑
i=1

(dist(p, wi))
2.

Proof. From the triangle inequality and (a + b)2 ≤ 2a2 + 2b2 for real numbers a, b, we have for
i = 1, 2, . . . ,m

(dist(p, w))2 ≤ (dist(p, wi) + dist(wi, w))
2 ≤ 2(dist(p, wi))

2 + 2(dist(wi, w))2.

Since w is the Karcher mean of w1, w2, . . . , wm, it holds that

m∑
i=1

(dist(w,wi))
2 ≤

m∑
i=1

(dist(p, wi))
2.

It then follows that

mdist(p, w)2 ≤ 2

m∑
i=1

(dist(p, wi))
2 + 2

m∑
i=1

(dist(wi, w))2 ≤ 4

m∑
i=1

(dist(p, wi))
2.

This completes the proof.
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We now derive the upper bound of the variance of ξst as follows.

Lemma B.3. Let Eist [·] be the expectation with respect to the distribution of the random choice of ist .
When each gradfn is β-Lipschitz continuously differentiable, the upper bound of the variance of ξst is
given by

Eist [‖ξst ‖2] ≤ β2(14(dist(wst−1, w
∗))2 + 8dist(w̃s−1, w∗))2). (A.5)

Proof. The variance of ξst in terms of the distance of wst and w̃s−1 from w∗ is upper bounded as

Eist [‖ξst ‖2]

= Eist
[
‖
(
gradfist (wst−1)− Pw

s
t−1←w

∗

γ (gradfist (w∗))
)

+
(
P
ws

t−1←w
∗

γ (gradfist (w∗))− Pw
s
t−1←w̃s−1

γ

(
gradfist (w̃s−1)

)
+ P

ws
t−1←w̃s−1

γ

(
gradf(w̃s−1)

))
‖2
]

≤ 2Eist
[
‖gradfist (wst−1)− Pw

s
t−1←w

∗

γ (gradfist (w∗))‖2
]

+2Eist
[
‖Pw

s
t−1←w̃s−1

γ

(
gradfist (w̃s−1)

)
− Pw

s
t−1←w

∗

γ

(
gradfist (w∗)

)
− Pw

s
t−1←w̃s−1

γ

(
gradf(w̃s−1)

)
‖2
]

= 2Eist
[
‖gradfist (wst−1)− Pw

s
t−1←w

∗

γ (gradfist (w∗))‖2
]

+2Eist
[
‖Pw

s
t−1←w̃s−1

γ

(
gradfist (w̃s−1)

)
− Pw

s
t−1←w

∗

γ (gradfist (w∗))‖2
]

−4
〈
P
ws

t−1←w̃s−1

γ

(
gradf(w̃s−1)

)
, P

ws
t−1←w̃s−1

γ

(
gradf(w̃s−1)

)
− Pw

s
t−1←w

∗

γ (gradf(w∗))
〉

+2‖Pw
s
t−1←w̃s−1

γ

(
gradf(w̃s−1)

)
‖2

= 2Eist
[
‖gradfist (wst−1)− Pw

s
t−1←w

∗

γ (gradfist (w∗))‖2
]

+2Eist
[
‖Pw

s
t−1←w̃s−1

γ

(
gradfist (w̃s−1)

)
− Pw

s
t−1←w

∗

γ (gradfist (w∗))‖2
]

−2‖Pw
s
t−1←w̃s−1

γ

(
gradf(w̃s−1)

)
‖2

≤ 2Eist
[
‖gradfist (wst−1)− Pw

s
t−1←w

∗

γ (gradfist (w∗))‖2
]

+2Eist
[
‖Pw

s
t−1←w̃s−1

γ

(
gradfist (w̃s−1)

)
− Pw

s
t−1←w

∗

γ (gradfist (w∗))‖2
]

≤ 2Eist
[
‖gradfist (wst−1)− Pw

s
t−1←w

∗

γ (gradfist (w∗))‖2
]

+2Eist
[
‖Pw

s
t−1←w̃s−1

γ

(
gradfist (w̃s−1)

)
− gradfist (wst−1) + gradfist (wst−1)− Pw

s
t−1←w

∗

γ (gradfist (w∗))‖2
]

≤ 2Eist
[
‖gradfist (wst−1)− Pw

s
t−1←w

∗

γ (gradfist (w∗))‖2
]

+4Eist
[
‖Pw

s
t−1←w̃s−1

γ

(
gradfist (w̃s−1)

)
− gradfist (wst−1)‖2

]
+4Eist

[
‖gradfist (wst−1)− Pw

s
t−1←w

∗

γ (gradfist (w∗))‖2
]

(A.4)

≤ β2(6(dist(wst−1, w
∗))2 + 4(dist(w̃s−1, wst−1))2)

≤ β2(6(dist(wst−1, w
∗))2 + 4(dist(w̃s−1, w∗) + dist(w∗, wst−1))2)

≤ β2(6(dist(wst−1, w
∗))2 + 8(dist(w̃s−1, w∗))2 + 8(dist(w∗, wst−1))2)

= β2(14(dist(wst−1, w
∗))2 + 8(dist(w̃s−1, w∗))2),

where the first, fourth and seventh inequalities follow from (a+b)2 ≤ 2a2+2b2 for real numbers a, b, and
the sixth inequality uses the triangle inequality. The third equality comes from Eist [gradfist (w̃s−1)] =
gradf(w̃s−1), and the fourth equality from gradf(w∗) = 0.
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Now we introduce Lemma 6 in [21] to evaluate the distance between xst and x∗ using the smooth-
ness of our objective function.

Lemma B.4 (Lemma 6 in [21]). If a, b, c are the sides (i.e., side lengths) of a geodesic triangle in
an Alexandrov space with curvature lower bounded by κ, and A is the angle between sides b and c, then

a2 ≤
√
|κ|c

tanh(
√
|κ|c)

b2 + c2 − 2bc cos(A).

Note that all the theorems and lemmas above hold for the Grassmann manifold. In the last
theorem, we consider the Grassmann manifold specifically.

Theorem B.5. Let M be the Grassmann manifold and U∗ ∈M be a non-degenerate local minimizer
of f (i.e., gradf(U∗) = 0 and the Hessian Hessf(U∗) of f at U∗ is positive definite) and suppose that
the assumption in Lemma B.1 holds. When each gradfn is β-Lipschitz continuously differentiable and
η > 0 is sufficiently small such that 0 < η(σ − 14ηβ2) < 1, it then follows that for any sequence {Ũs}
generated by the algorithm converging to U∗, there exists K > 0 such that for all s > K,

E[(dist(Ũ
s
,U∗))2] ≤ 4(1 + 8mη2β2)

ηm(σ − 14ηβ2)
E[(dist(Ũ

s−1
,U∗))2].

Proof. The Grassmann manifold is geodesically complete [14] and the sectional curvature of the Grass-
mann manifold is bounded below by 0 [25]. Every complete Riemannian manifold whose sectional
curvature is bounded below is an Alexandrov space [26]. Therefore, the Grassmann manifold satisfies
the assumptions in Lemma B.4 with κ = 0. Then, conditioned on Us

t−1, the expectation of the
distance between Us

t and U∗ with respect to the random choice of ist is evaluated as

Eist
[
(dist(Us

t ,U
∗))2

]
≤ Eist

[
(dist(Us

t−1,U
s
t ))

2 + (dist(Us
t−1,U

∗))2 − 2〈Exp−1Us
t−1

(Us
t ),Exp−1Us

t−1
(U∗)〉Us

t−1

]
.

It follows that

Eist
[
(dist(Us

t ,U
∗))2 − (dist(Us

t−1,U
∗))2

]
≤ Eist [(dist(Us

t−1,U
s
t ))

2 − 2〈−ηξst ,Exp−1Us
t−1

(U∗)〉Us
t−1

]

= Eist [(dist(Us
t−1,U

s
t ))

2 + 2η〈gradf(Us
t−1),Exp−1Us

t−1
(U∗)〉Us

t−1
],

where the last equality follows

Eist [ξst ] = Eist [gradfist (Us
t−1)]− PUs

t−1←Ũ
s−1

γ

(
Eist [gradfist (Ũ

s−1
)]− gradf(Ũ

s−1
)
)

= gradf(Us
t−1)− PUs

t−1←Ũ
s−1

γ

(
gradf(Ũ

s−1
)− gradf(Ũ

s−1
)
)

= gradf(Us
t−1).

Lemma B.1 together with the relation f(U∗) ≤ f(Us
t−1) yields that

〈gradf(Us
t−1),Exp−1Us

t−1
(U∗)〉Us

t−1
≤ −σ

2
‖Exp−1Us

t−1
(U∗)‖2Us

t−1
= −σ

2
(dist(Us

t−1,U
∗))2,

with the assumption that K is sufficient large. We thus obtain by Lemma B.3

E
[
(dist(Us

t ,U
∗))2 − (dist(Us

t−1,U
∗))2

]
≤ E[‖ηξst ‖2 − ση(dist(Us

t−1,U
∗))2]

(A.5)

≤ η2β2E[14(dist(Us
t−1,U

∗))2 + 8(dist(Ũ
s−1

,U∗))2 − ση(dist(Us
t−1,U

∗))2]

= η(14ηβ2 − σ)E[(dist(Us
t−1,U

∗))2 + 8η2β2(dist(Ũ
s−1

,U∗))2].
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It follows that

Eist
[
(dist(Us

t ,U
∗))2 − (dist(Us

t−1,U
∗))2

]
≤ η(14ηβ2 − σ)Eist

[
(dist(Us

t−1,U
∗))2 + 8η2β2(dist(Ũ

s−1
,U∗))2

]
.

Summing over t = 1, . . . ,m of the inner loop on s-th epoch, we have

E[(dist(Us
m,U

∗))2 − (dist(Us
0,U

∗))2]

≤ η(14ηβ2 − σ)

m∑
t=1

E[(dist(Us
t−1,U

∗))2] + 8mη2β2(dist(Ũ
s−1

,U∗))2.

Rearranging and using Us
0 = Ũ

s−1
, we obtain

η(σ − 14ηβ2)

m∑
t=1

E[(dist(Us
t ,U

∗))2]

= η(σ − 14ηβ2)E

[
m−1∑
t=0

(dist(Us
t ,U

∗))2 + (dist(Us
m,U

∗))2 − (dist(Us
0,U

∗))2

]
≤ E

[
(dist(Us

0,U
∗))2 − (dist(Us

m,U
∗))2 + 8mη2β2(dist(Us

0,U
∗))2

−η(σ − 14ηβ2)((dist(Us
0,U

∗))2 − (dist(Us
m,U

∗))2)
]

≤ (1− η(σ − 14ηβ2) + 8mη2β2)E[(dist(Us
m,U

∗))2]

≤ (1 + 8mη2β2)E[(dist(Ũ
s−1

,U∗))2].

Using Ũ
s

= gm(Us
1, . . . ,U

s
m) and Lemma B.2, we obtain

E[(dist(Ũ
s
,U∗))2] ≤ 4(1 + 8mη2β2)

ηm(σ − 14ηβ2)
E[(dist(Ũ

s−1
,U∗))2].

In the above theorem, we note that, from the definitions of β and σ, β can be chosen arbitrarily
large and σ arbitrarily small. Therefore, η = σ/28β2, for example, satisfies 0 < η(σ − 14ηβ2) < 1 for
sufficiently large β and small σ.

C Additional numerical comparison

In addition to the representative numerical comparisons in the paper, we show additional numerical
experiments.

PCA problem (additional experiments). We consider the PCA problem of N = 10000,
d = 20, and r = 10. Whereas the manuscript provides the results for the case of r = 5, here we
show the results for the case of r = 10. Figure A.1(a) shows the train loss, optimality gap, and the
norm of gradient. These results indicate the superior performances of R-SVRG and R-SVRG+. In
addition, we consider a larger-scale instance with d = 100 and d = 20. The results are shown in
Figures A.1(b) and A.1(c) for two different ranks r = 5 and r = 10, respectively. Overall, we find the
superior performances of R-SVRG and R-SVRG+.

Karcher mean problem (additional experiments). The manuscript shows the results for the
case of r = 5, where N = 1000, d = 300, Figure A.2(a) shows the results of r = 10. In this instance,
R-SVRG+ shows superior performance than R-SVRG in terms of the final loss values. Furthermore,
Figures A.2(b) and (c) shows the results for the case with N = 1000 and d = 100 and with r = 5 and
r = 10, respectively. R-SVRG outperforms R-SGD and the final loss of R-SVRG is less than that of
R-SD.
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Matrix completion problem (additional experiments). We show the additional results for
the smaller instances N = 1000, d = 500, and r = 5 in Figure A.3(a). R-SGD and Grouse decrease
very fast in the beginning, but R-SVRG(+) converges to lower values. Figure A.3(b) also shows the
case of r = 10. Although Grouse indicates the fastest convergence, and gives the lowest values in
the train loss as the same R-SVRG(+), R-SVRG(+) outperforms Grouse and R-SGD in test loss.
In addition, we show all the results of for N = 5000, d = 500, and r = 5 in Figure A.4(a). These
experiments are identical to those in the manuscript. The results show the superior performance of
our proposed algorithms. Furthermore, we consider a higher rank of r = 10 in Figure A.4(b). The
results also show that R-SVRG yield better performances than Grouse and R-SGD.

Next, we show additional results on the Jester dataset 1. We first show all the results in Figure
A.5(a) for the case of r = 5, some of which are shown in the manuscript. Figure A.5(b) with a larger
rank r = 10. Overall, our proposed R-SVRG and R-SVRG+ indicate much better convergence than
R-SD, R-SGD, and Grouse.

Finally, we show results on the MovieLens-1M dataset. Figure A.6(a) shows the results for the
rank 5. Figures A.6(a-2) and (a-4) are identical to those in the manuscript. We also show results with
larger rank r = 10 case in Figure A.6(b). Once again, our proposed R-SVRG and R-SVRG+ show
better results than R-SD and R-SGD.

Effect of batch-size. Here, we show the effect of batch-size on R-SVRG. For this purpose, we
consider the PCA problem of N = 10000, d = 20, and r = 5. Figures A.7(a)-(c) show the results
for three step-size sequences of R-SVRG, respectively. We consider five different batch-sizes from
{5, 10, 25, 50, 100}. The figures show that R-SVRG similar performance across different batch-sizes.
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(a-1) Train loss (enlarged). (a-2) Optimality gap. (a-3) Norm of gradient.

(a) N = 10000, d = 20, r = 10.

(b-1) Train loss (enlarged). (b-2) Optimality gap. (b-3) Norm of gradient.

(b) N = 10000, d = 100, r = 5.

(c-1) Train loss (enlarged). (c-2) Optimality gap. (c-3) Norm of gradient.

(c) N = 10000, d = 100, r = 10.

Figure A.1: The PCA problem.
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(a-1) Train loss. (a-2) Train loss (enlarged). (a-3) Norm of gradient.

(a) N = 1000, d = 300, r = 10.

(b-1) Train loss. (b-2) Train loss (enlarged). (b-3) Norm of gradient.

(b) N = 3000, d = 100, r = 5.

(c-1) Train loss. (c-2) Train loss (enlarged). (c-3) Norm of gradient.

(c) N = 3000, d = 100, r = 10.

Figure A.2: The Karcher mean problem.
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(a-1) Train loss. (a-2) Train loss (enlarged). (a-3) Test loss.

(a-4) Test loss (enlarged). (a-5) Norm of gradient.

(a) r = 5.

(b-1) Train loss. (b-2) Train loss (enlarged). (b-3) Test loss.

(b-4) Test loss (enlarged). (b-5) Norm of gradient.

(b) r = 10.

Figure A.3: Low-rank matrix completion problem (synthetic dataset: N = 1000, d = 500).
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(a-1) Train loss. (a-2) Train loss (enlarged). (a-3) Test loss.

(a-4) Test loss (enlarged). (a-5) Norm of gradient.

(a) r = 5.

(b-1) Train loss. (b-2) Train loss (enlarged). (b-3) Test loss.

(b-4) Test loss (enlarged). (b-5) Norm of gradient.

(b) r = 10.

Figure A.4: The low-rank matrix completion problem (synthetic dataset: N = 5000, d = 500).
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(a-1) Train loss. (a-2) Train loss (enlarged). (a-3) Test loss.

(a-4) Test loss (enlarged). (a-5) Norm of gradient.

(a) r = 5.

(b-1) Train loss. (b-2) Train loss (enlarged). (b-3) Test loss.

(b-4) Test loss (enlarged). (b-5) Norm of gradient.

(b) r = 10.

Figure A.5: The low-rank matrix completion problem (Jester dataset).
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(a-1) Train loss (enlarged). (a-2) Train loss (enlarge 2).

(a-3) Test loss (enlarged). (a-4) Test loss (enlarged). (a-5) Norm of gradient.

(a) r = 5.

(b-1) Train loss (enlarged). (b-2) Train loss (enlarge 2).

(b-3) Test loss. (b-4) Test loss (enlarged). (b-5) Norm of gradient.

(b) r = 10.

Figure A.6: The low-rank matrix completion problem (MovieLens-1M dataset).
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(a-1) Train loss (enlarged). (a-2) Optimality gap. (a-3) Norm of gradient.

(a) R-SVRG with fixed step-size.

(b-1) Train loss (enlarged). (b-2) Optimality gap. (b-3) Norm of gradient.

(b) R-SVRG with decay step-size.

(c-1) Train loss (enlarged). (c-2) Optimality gap. (c-3) Norm of gradient.

(c) R-SVRG with hybrid step-size.

Figure A.7: Batch-size comparisons for R-SVRG (PCA problem: N = 10000, d = 20, r = 5).
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